
Adaptive Probabilistic Model for Ranking Code-Based Static Analysis Alerts

Sarah Smith Heckman
North Carolina State University, Campus Box 8206, Raleigh, NC 27695

sarah_heckman@ncsu.edu

Abstract

Software engineers tend to repeat mistakes when
developing software. Automated static analysis tools
can detect some of these mistakes early in the software
process. However, these tools tend to generate a
significant number of false positive alerts. Due to the
need for manual inspection of alerts, the high number
of false positives may make an automated static
analysis tool too costly to use. In this research, we
propose to rank alerts generated from automated static
analysis tools via an adaptive model that predicts the
probability an alert is a true fault in a system. The
model adapts based upon a history of the actions the
software engineer has taken to either filter false
positive alerts or fix true faults. We hypothesize that
by providing this adaptive ranking, software engineers
will be more likely to act upon highly ranked alerts
until the probability that remaining alerts are true
positives falls below a subjective threshold.

1. Introduction

Software engineers tend to repeat mistakes that lead
to software faults1 [2]. Automated static analysis
(ASA) tools can find these mistakes and provide
valuable feedback about the correctness of code [2]
early in the development life cycle. However, ASA
tools report on average 66% false positives (FP) [1, 2,
4]. Due to the need for manual inspection of alerts [4],
a high number of FPs may make an ASA tool too
costly to use.

The objective of this research is to mitigate the cost
of false positives by developing an adaptive
probabilistic model to rank alerts generated from
automated static analysis tools by the probability that
an alert is a true fault in the system. We will
investigate the following theories: 1) the probabilistic
model with rank true positive (TP) alerts with a higher
probability than FP alerts and 2) software engineers
will continue to investigate alerts until the probability
that the remaining alerts are TPs falls below the

1 For this research, fault specifies a manifestation of a mistake. A
fault may never surface as a failure during operational use.

software engineer’s subjective threshold. The
Automated Warning Application for Reliability
Engineering2 (AWARE) tool automates the adaptive
ranking model and gathers data to validate the
proposed theories.

2. Proposed solution

The focus of this research is on the development of
a probabilistic model for the adaptive ranking of alerts
generated by ASA tools to mitigate the cost of FPs.

2.1. Key model concepts

Software engineers will select an alert from the
ranked list and inspect the associated source code for
the possible fault. Filtering or closing an alert removes
the alert from current or future rankings:
• A software engineer filters an alert when no fault is

observed in the specified source code.
• The alert is closed when an ASA tool no longer

identifies an alert. An alert is closed by an alert fix
or configuration change of the ASA tool.

2.2. Alert ranking model

ASA alerts are ranked by the probability that an
alert is a TP in the system. In the current version of the
model, AWARE v0.3, three factors contribute to the
ranking of an ASA alert: Type Accuracy (TA), Code
Locality (CL), and Generated Test Failure (GTF). The
total probability is a weighted combination of TA and
CL (where weights are represented by the βTA and βCL
coefficients) when GTF is not 1. If GTF is 1, then a
concrete test case was generated that causes a failure.
Equation 1 describes how the probability (P) that a
single alert (α) is a TP is calculated.

() ()

1
1,1

1,)()(
)(

=+




=
≠+

=Ρ

CLTA

CLTA

where
GTF

GTFCLTA

ββ

αβαβ
α

(1)

The number of filtered and closed alerts in a
population of alerts adjusts the TA and CL values via

2 Download AWARE from: http://agile.csc.ncsu.edu/aware.

the adjustment factor (AF) described in Equation 2. A
population (p) of alerts is a subset of alerts from the
total population that share some characteristic (e.g. the
same alert type or location).

)/(#

)/(#0.1

pp

ppp

totalclosed

totalfilteredAF +−=
(2)

Type accuracy, described in Equation 3, is the
probability that an alert is a TP based upon its type
(e.g. cast error, null pointer, etc.). ASA tools have
different ratios of TPs to FPs dependent on the
individual checker and the code under analysis [2]. The
TA value of alert (α) is adjusted based on software
engineer feedback on the population of alerts of the
same alert type as α. Each alert type is seeded with an
initial TA value (τ), which reflects the ratio of TPs to
all alerts found by the ASA checker for the type. τ may
be based on literature or historical, empirical evidence.

typeAFTA ⋅= τα)((3)
Code locality, described in Equation 4, is the

probability that an alert is a TP based on the alert’s
location in the source code. The CL value of alert (α)
is adjusted based on the number of filtered and closed
alerts in the same method, class, or package of α [3].
The contribution of each code location to the CL value
is weighted based on literature or historical, empirical
evidence and represented by a β coefficient.

1

)()()()(

=++

++=

packageclassmethod

packagepackageclassclassmethodmethod

where

AFAFAFCL

βββ
βββα

(4)

Generated test failure, described in Equation 5, is
the probability that an alert is a TP based on the failure
of test case(s) generated from the alert’s feedback [1].
A failing test cases describes an exercisable error,
therefore the probability of the alert being a TP is 1.





=
passtestsallif
failstestanyif

GTF
,0
,1

)(α

(5)

3. Research methodology and evaluation

The research methodology will consist of
developing and evolving the probabilistic model to
rank ASA alerts via a literature search, intellectual
work, and formative cases studies. Over the course of
the research, the contribution of each factor will be
ascertained, and factors may be modified as necessary.
Other factors will be investigated for inclusion in the
final probabilistic model. The best ranking factors for
the model will be determined by looking at several
versions of active open source projects written in Java
with associated bug databases. A subset of projects
will calibrate the probabilistic model that is used to
predict the ranking of ASA alerts for the remaining
projects. Correlations between factors and the strength

of the contributions of each factor will be measured.
The factors with the strongest contribution will become
part of the ranking model.

Finally, empirical case studies will be conducted
with industrial partners. Model calibration will occur
via historical studies of the project under analysis.
Data about the model will be gathered in process by
AWARE.

4. Summary

The expected contribution of this research is to
mitigate the cost of FPs by developing an adaptive
probabilistic model to rank alerts generated from ASA
tool(s) by the probability that an alert is a TP in the
system. Feedback from software engineers in the form
of filtering alerts found to be FPs and fixing alerts
found to be TPs modifies the ranking of remaining
ASA alerts. Ranking alerts could make the use of ASA
tools more tractable by reducing the cost of FP alerts.
While this research focuses on the Java™
programming language, the generation of a
probabilistic model for other languages should follow.

5. Acknowledgements

This work is supported in part by the Center for
Advanced Computing and Communication grant and
an IBM PhD Fellowship Award. I would like to thank
the RealSearch reading group for their feedback.

6. References

[1] C. Csallner and Y. Smaragdakis, "Check 'n' Crash:

Combining Static Checking and Testing," in 27th
International Conference on Software Engineering, St.
Louis, MO, USA, 2005, pp. 422-431.

[2] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy," in
19th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Vancouver, British Columbia, Canada, 2004, pp. 132-
136.

[3] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler,
"Correlation Exploitation in Error Ranking," in 12th
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Newport Beach,
CA, USA, 2004, pp. 83-93.

[4] S. Wagner, J. Jrjens, C. Koller, and P. Trischberger,
"Comparing Bug Finding Tools with Reviews and
Tests," in 17th International Conference on Testing of
Communicating Systems, 2005, pp. 40-55.

