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ABSTRACT 
Active learning increases student learning through collaborative 
engagement with materials during class time. A CS1.5 course at 
NC State, CSC216, uses active learning lectures involving short 
simplified think-pair-share in-class exercises to engage students 
with course materials. However, students still struggle with the 
course materials and several students do not successfully complete 
the course on their first attempt. To increase student learning and 
engagement, we conducted a quasi-experimental study 
incorporating in-class labs into two sections of CSC216 during the 
linear data structures unit in the Fall 2014 semester. Both sections 
completed in-class labs on the Java Collections Framework and 
iterators. One section completed in-class labs on array-based lists; 
the other section completed in-class labs on linked lists, in a 
counter-balanced study design. The active learning lecture 
delivery was used for the control section and an Exam was 
administered between the array-based list and linked list topics.  
Overall, we found no significant difference in student learning on 
array-based and linked lists as measured by the final exam.  
Students displayed half as much disengaged behavior during in-
class labs and were five times more likely to ask for help from the 
teaching staff during in-class labs.  

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education – computer science education.  

General Terms 
Experimentation 

Keywords 
In-class labs; empirical computer science education; linear data 
structures; CS1.5 

1. INTRODUCTION 
Students struggle with the material in CSC216: Programming 
Concepts – Java, a second semester CS1.5 programming course 
for computer science majors and minors at North Carolina State 
University.  While a large majority of students successfully 
complete CSC216 on a first or second attempt, many students 
report difficulty with the coursework throughout the semester.   

The prerequisite course of CSC216 is CSC116: Introduction to 
Programming – Java, a first semester introductory programming 
course taught in Java1  with a use objects early, write objects late 
paradigm.  CSC116 is an integrated-lecture lab with at most 33 
students in each of seven or eight sections.  The class meets twice 
a week for 110 minutes and one instructor and two TAs are 
available to help students.  CSC216 moves students into two large 
lecture sections of 70-100 students.  There is one instructor per 
section (sometimes the same instructor for both sections) and 
three to four TAs pooled for the two sections.  A common request 
on end of semester evaluations for CSC216 is an increase in the 
amount of in-class programming practice similar to the level in 
CSC116. 

Research has shown that active learning, defined by Freeman et 
al. [9] as “engaging students in the process of learning through 
activities and/or discussion in class, as opposed to passively 
listening to an expert,” increases student learning through 
collaborative engagement with materials during class time [1, 5, 7, 
9, 13, 15].  CSC216 currently incorporates a simplified version of 
the active learning technique, think-pair-share [7, 14], where the 
emphasis is on the pair and share. However, many students still 
struggle in the course, and we hypothesize that active learning 
practices that involve larger problems would increase student 
learning and engagement.   

The study in this paper reports on the use of in-class laboratories, 
as an inverted or flipped classroom experience [15], for a unit on 
linear data structures in CSC216.  The goal of our research is to 
increase student learning and engagement through in-class 
laboratories on linear data structures.  We conducted a counter-
balanced study on the use of in-class laboratories on two sections 
of CSC216 taught by the author at the same time on different days 
during the Fall 2014 semester.  We found no significant difference 
in student learning on linear data structure topics; however, we 
found a large increase in student engagement measured by counts 
of off topic behavior and student interactions with teaching staff 
as reported by external observers. However, many of the 
interactions with students during in-class labs were focused more 
on the technology used in the course than on the lab topics. 

We contribute to the growth of theory in computing education 
research by building on the foundations of theoretical work [17] in 
active learning [1, 5, 7, 9, 13, 15]. Additionally, our work builds 
on a foundation of Bandura’s self-efficacy theory [2]. By 
reporting null-results for learning, we provide more data about the 
landscape of active learning interventions [21]. The contributions 
are: 

                                                                 
1 Oracle’s Java may be found at:  
http://www.oracle.com/technetwork/java/index.html 
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 A replicable study methodology for assessing student 
learning and engagement when using in-class laboratory 
assignments. 

 Additional data on the effectiveness of active learning 
activities, like think-pair-share exercises and in-class labs, on 
student learning and engagement. 

This study is the first in a series of interventions focused on 
increasing student learning, engagement, and eventually 
completion through the incorporation of various active learning 
techniques and software engineering best practices into CSC216 
coursework.   

The rest of this paper is organized as follows: Section 2 describes 
related work; Section 3 describes the study methodology; Section 
4 reports the results; Section 5 provides the threats to validity; 
Section 6 is a discussion of findings; and Section 7 concludes and 
presents future work. 

2. RELATED WORK 
A large meta-analysis on active learning in science, engineering, 
and mathematics found that active learning activities like think-
pair-share [7, 14] and inverted or flipped classrooms support 
students learning, increase engagement, and reduce failure rates 
[9].  Freeman et al., [9] found that student performance on exams 
or concept inventories increased almost half of a standard 
deviation when using active learning as compared to traditional 
lecture. Kothiyal et al. [14] report an average 83% student 
engagement in lecture when using think-pair-share in CS1. These 
results are useful comparison points for our results. 

Our delivery of in-class labs in CSC216 was modeled on the 
inverted or flipped classroom.  Many CS researchers have 
investigated inverted classroom models in classes at various 
levels. Amresh et al., [1] conducted a preliminary study on the 
effectiveness of a flipped classroom in a CS1 for majors and non-
majors.  They found that students in the flipped sections of the 
course earned higher average scores.  Student efficacy also 
increased, but the increase may be from other factors than just the 
course flip. Latulipe et al. [16] included lightweight teams and 
gamification in a flipped media computation class.  Results show 
that lightweight teams enhanced student learning and increased 
course engagement.  We used randomly assigned teams for in-
class lab activities in CS1.5, but not the full lightweight team 
strategy.  

Campbell et al., [5] reported on a study of inverting a CS1 course.  
They found that while fewer students attended the lectures in the 
inverted offering, more students completed the preparatory work 
including videos and quizzes, likely because the preparatory work 
counted for credit.  Students also reported in a survey that they 
enjoyed the inverted model, but that they felt the course took more 
time.  The authors found no significant difference in learning 
when compared with a traditional offering of the course.  Horton 
et al., [12] continued the work by comparing a traditional and 
inverted CS1 course and reported similar pass rates, but a 
statically significant difference on final exam grade as a measure 
of student learning. We consider similar metrics for evaluation of 
our comparison of active learning lectures and in-class labs.  

3. STUDY METHODOLOGY 
The goal of our research is to increase student learning and 
engagement through in-class laboratories on linear data structures. 
We considered the following research questions: 

RQ1: Do in-class laboratories on linear data structures increase 
student learning on linear data structure exam questions 
when compared to active learning lectures? 

 
RQ2: Do in-class laboratories on linear data structures increase 

student engagement when compared with active learning 
lectures? 

 
Several of the artifacts used for the study are available as a partial 
replication package [20] including the initial survey, observation 
protocol, and in-class laboratories and related materials [10].  
Other materials, including informed consent, exam questions, and 
projects are available from the author by request. 

3.1 Study Context 
We conducted the study in CSC216: Programming Concepts – 
Java during the Fall 2014 semester. CSC216 is a second semester 
CS1.5 computer science course, which covers advanced object 
oriented programming, introductory software engineering, linear 
data structures, finite state machines, recursion, GUIs, sorting, and 
searching.  The class meets twice a week for 75 minutes.  Course 
grades are a combination of three tutorials [11], three two-part 
programming projects, in-class exercises, and three examinations.  
The author taught two sections of CSC216 during the Fall 2014 
semester.  Both sections met in large lecture halls with stationary 
desks and chairs.   

In CSC216 students work with a number of tools to support the 
learning outcomes related to software engineering.  Students 
develop assignments in the Eclipse Juno2 integrated development 
environment using Java v1.7 with a suite of Eclipse plug-ins.  
Unit tests are written with JUnit v43 and coverage is measured by 
EclEmma4, which uses the Jacoco5 code coverage library.  Static 
analysis tools, FindBugs6, PMD7, and CheckStyle8, check for 
misuse of the Java language and styling problems.  Student 
programming assignments are submitted for evaluation by 
pushing the project to our university’s enterprise GitHub9. Student 
jobs are evaluated automatically with every push to GitHub by 
using the continuous integration server Jenkins10.  Each student 
has a Jenkins job for their project and the job will build the 
student project, run the student’s tests instrumented for coverage, 
run the static analysis tools, and run a suite of teaching staff unit 
tests, similar to Web-CAT [6]. Students are introduced to these 
technologies through a series of tutorials [11].   

3.2 Study Participants 
Students registered for their section of CSC216 on a first-come, 
first-served basis.  Table 1 provides an overview of each section.  
We exclude counts on minority students due to low numbers that 
may lead to identification.  The author solicited informed consent 
from students on the first day of class (NC State IRB #4169).  
Students opted into or out of the study and completed a survey.  
After the solicitation for participation, the author left the room and 
the author’s Ph.D. student collected informed consents and 

                                                                 
2 Eclipse may be found at: http://www.eclipse.org/. 
3 JUnit may be found at: http://junit.org/. 
4 EclEmma may be found at: http://www.eclemma.org/. 
5 Jacoco may be found at: http://www.eclemma.org/jacoco/. 
6 FindBugs may be found at: http://findbugs.sourceforge.net/ 
7 PMD may be found at: http://pmd.sourceforge.net/. 
8 CheckStyle may be found at: http://checkstyle.sourceforge.net/. 
9 GitHub may be found at: https://github.com/. 
10 Jenkins may be found at: https://jenkins-ci.org/. 



surveys.  To reduce bias, the author’s Ph.D. student held all 
informed consents and surveys until final grade submission.   

Table 1: Information about Participants 
Metric Section 001 Section 002 
# Enrolled 85 102 
Participants 
(completed course) 

49 60 

Dropped/Withdrawn 
(consenting only) 

3 4 

Women 9 10 
Meeting Time TH 2:05p-3:35p MW 2:05p-3:35p 
   

 

Students were given an introductory survey about their 
background and efficacy when completing informed consent [10].  
These measures characterize the consenting populations and show 
that the participants are similar between the two sections.  Table 2 
shows the difference between Section 001 and Section 002 
percentages on prior experience with using course technology as 
listed in Section 3.1.  A positive number implies that Section 001 
had a higher percentage of responses at that level of experience 
for the given tool and a negative response implies that Section 002 
had a higher percentage.  A difference of 0% shows that the 
populations were the same.  For each possible Likert response, we 
characterized the prior experience measure by providing 
guidelines of the response’s meaning in terms of the number of 
classes and work experience.  For most responses, there was less 
than a 10% difference between sections.  The only responses with 
a greater than 10% difference are shaded in gray.  More students 
in Section 002 responded that they had “some” experience with 
Eclipse.  Students in Section 001 had more students with “no” 
experience with the Eclipse Debugger and Static Analysis; 
however the Section 002 experience varies across the categories.  
These results overall show a relatively common set of prior 
experiences with course tooling. 

Another factor of student success is student self-efficacy or self-
belief [2].  Bandera defines an efficacy expectation as “the 
conviction that one can successfully execute the behavior required 
to produce the outcomes” [2]. Computer science students know 
the steps to complete a programming assignment successfully, but 
may not believe that they have the ability to complete the task.  
Scott and Ghinea [19] found a relationship between a student’s 
self-belief about their programming aptitude and their 
programming practice behavior, so self-efficacy is important for 
student success. We surveyed students on their confidence (Table 
3).  The self-efficacy questions are adapted from examples given 

by Bishop-Clark and Dietz-Uhler [4], but future studies may 
consider a preliminarily validated instrument by Scott and Ghinea 
[19]. Cells in gray are where there is more than a 10% difference 
between Sections 001 and 002 on their agreement with a given 
statement.  Agreement with statements A, D, and E suggest 
confidence while agreement with statements B and C suggest a 
lack of confidence.  The results show that both sections have a 
similar level of confidence.  Section 002 had a higher percentage 
of students that strongly agree with the statement “I could learn 
programming and testing”.  A higher percentage of students in 
Section 001 were neutral on statements B and C, suggesting that 
they may have less self-efficacy about their programming skills. 

 
 Table 3: Programming and Testing Confidence 

 Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

A -17% 17% 0% 0% 0% 
B 2% -1% 13% -13% -1% 
C 0% -1% 10% -11% 2% 
D 4% -21% 9% 9% 0% 
E 2% -14% 14% 3% -5% 

A: I am sure that I could learn programming and testing. 
B: I am not good at programming and testing. 
C: I am not the type to do well at programming and testing. 
D: I have a lot of self-confidence when it comes to programming and 
testing. 
E: Generally, I have felt secure about computer programming and testing. 

3.3 Study Setup 
The use of active learning activities, like think-pair-share 
exercises and in-class labs, are proven to increase student learning 
[9, 13].  To minimize the disadvantage to one group of students 
through the intervention of in-class labs, we used a counter-
balanced study design so that each section of the course would 
have an opportunity to receive the intervention and we could 
measure student learning on each topic.  Six lectures on linear 
data structures out of the 28 lectures in CSC216 were converted to 
in-class lab activities (a seventh in-class lab involving code 
inspection was also done, but it did not directly relate to linear 
data structures and is not considered in this paper).  The linear 
data structures unit was selected because two of the topics, array-
based and linked lists, are very similar and would work well in a 
counter-balanced study design as shown in Figure 1. 

The gray boxes in Figure 1 represent class periods where students 
participated in the in-class lab intervention.  The first and last 
labs, Lists (an overview of using the Java Collections Framework) 
and Iterators, were common for both sections.  Section 001 
received array-based list instruction as in-class labs and linked list 
instruction with active learning lectures.  Section 002 received 
array-based list instruction with active learning lectures and linked 
list instruction as in-class labs.  The details about active learning 
lectures are in Section 3.4 and details about the in-class labs are in 
Section 3.5. 

Administration of Exam 1 occurred between the array-based list 
and linked list class periods. Two parts of the exam assessed 
student learning of array-based lists.  Two parts of Exam 2 
assessed learning of linked nodes and linked lists.  The final exam 
included a question on both array-based lists and linked lists. 

To assess student engagement, graduate students and a colleague 
participating in a graduate seminar on Teaching and Learning in 
Computer Science observed one or more of the class meetings.  
The observations were conducted on the eight class periods for 
array-based lists and linked lists – four classes for each section.  

Table 2: Prior Experience with Course Tooling 

 None 
Very 
Little 

Some 
Quite 
a Bit 

Very 
Much 

# of Classes None  < 1 < 2 < 4 > 4 

Work Exp. None 
< 6 

mos. 
< 2 

years 
< 4 

years 
> 4  

years 
Java 0% 0% 0% 0% 0% 
Eclipse 9% 5% -11% -2% -2% 
Eclipse Debugger 15% -8% -5% 0% -2% 
Static Analysis 14% -7% -7% 0% 0% 
Unit Testing 5% -2% -1% -2% 0% 
Code Coverage 8% -4% -3% 0% 0% 
Version Control -3% 7% -3% -3% 2% 
Continuous 
Integration 

-1% -1% 0% 0% 2% 
 

 



Of the eight class periods, seven were observed. The provided 
observation protocol measured the off topic students and student’s 
engagement with the teaching staff [10].  Off topic behavior was 
defined as “checking a non-course related website, working on a 
project or other assignment, checking their cell phone, etc.” We 
asked observers to count the following items: 

 number of instances of off topic behavior during lecture 
portions of the class 

 number of instances of off topic behavior during exercise 
portions of the class 

 number of students off topic during lecture 
 number of students off topic during exercises 
 number of times a member of the teaching staff is called for 

help 
 number of students or student teams asking for help 

3.4 Active Learning Lectures 
CSC216 classes consist of lectures that are broken up with one or 
more simplified think-pair-share active learning exercises [7, 13].  
Active learning exercises engage students with the materials just 

covered in lecture. Students are encouraged to work on the 
exercises with their neighbors (pair) and submit exercise answers 
through Google Forms (share).  The Google spreadsheet backing 
the form updates automatically with new responses so the 
instructor can identify student misconceptions and address them 
after the exercise closes.  The active learning exercises count as 
part of the exercise portion of the student’s final grade.  Students 
earn at least half credit for attempting the exercise. 

The study control are the active learning lectures on array-based 
lists and linked lists.  Each topic had two class periods devoted to 
instruction, with seven associated think-pair-share exercises per 
topic split across the two class periods.  The first lecture provides 
a general overview of the data structure implemented as a list of 
integers.  The second lecture provides instruction about how to 
implement the data structure using generic types. 

3.5 In-class Laboratories 
Students completed four of the six in-class laboratories depending 
on their section. Before the in-class lab, students were expected to 
watch a short 10-15 minute video about the topic of the lab 
activity. As students entered the classroom, they joined their 
groups by finding the paper tent on the desk with their team 
number on it.  The class meeting began with a short lecture 
introduction to the lab activity, and then students started the lab 
activity.  The class concluded with a reflection exercise and a 
reminder to complete the activity outside of class. The in-class 
labs were intended to be counted in the exercise portion of the 
student’s grade, but were excluded by TAs during exercise grade 
calculation. 

Students were randomly placed on teams of three and were 
assigned a GitHub repository for their in-class lab work separate 
from their GitHub repositories for submitting projects.  Students 
with missing teammates were reassigned to another team during 
class to minimize students working on the in-class labs alone.   

The design of the in-class laboratories involved development 
exercises using the software engineering tools for the class.  Each 
lab, except the first lab, was broken into small tasks.  The first lab 
was a Power Point slide, but now the lab is available as a Google 
doc like all the other labs.  At the end of each task, the instructions 
stated students should run their tests, comment their code, and 
push to GitHub.  All lab materials, including slides, videos, and 
lab activities are available at [10]. 

3.5.1 Java Collections Framework In-class Lab 
The goal of the Java Collections Framework lab is the creation of 
a suite of unit tests appropriate for testing a linear data structure.  
By writing unit tests in the first in-class lab, the students practice 
test-driven development and can use the tests to evaluate later 
implementations of linear data structures.  Students started with an 
Eclipse project containing a jar’d implementation of an 
ArrayList of Strings.  A unit test skeleton and Javadoc of the 
ArrayList implementation contained the instructions for 
writing sufficient unit tests for 100% condition coverage of the 
ArrayList implementation. The instructions for this in-class 
lab were initially provided on a slide projected for both sections.  
Students struggled with projected instructions, so future labs had 
more detailed instructions.  The Java Collections Framework in-
class lab has been revised for future offerings. 

Figure 1: Study Design 
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3.5.2 In-class Lab 1 for Lists 
The goal of Part 1 of the ArrayList and LinkedList labs is 
to write an array-based or linked list of Strings.  Students start by 
copying and refactoring their tests from the Java Collections 
Framework lab into a new test file for verifying their List 
implementation.  Students then work on standard list 
functionality, state, constructor, size(), get(), add(), 
remove(), and set(), with reminders to document their 
code, run their tests, push to GitHub, and switch drivers. 

After implementing the major functions of the List class, 
students evaluate their test coverage on their solution and work on 
a stretch goal of writing a program that uses the List. 

3.5.3 In-class Lab 2 for Lists 
The goal of Part 2 of the ArrayList and LinkedList labs is 
to write a generic list.  Students start from the previous lab’s code 
and refactor both their tests and their implementation to work for 
any type of object. 

3.5.4 Iterators In-class Lab 
The goal of the Iterators lab is for students to implement a 
LinkedList by extending AbstractSequentialList. 
The standard List methods in AbstractSequentialList 
are implemented in terms of an Iterator.  Students must write 
a custom Iterator for AbstractSequentialList to work.  
Students continue to use their tests from the Java Collections 
Framework lab to verify their solution. 

4. STUDY RESULTS 
The following sections outline results of the in-class lab activities 
on student learning of linear data structures and student 
engagement. 

4.1 Learning on Linear Data Structures 
Three written examinations measured student knowledge on linear 
data structures.  We only report the summary exam data for 
consenting students. 

We administered Exam 1 between the array-based lists and linked 
lists portions of the linear data structures unit.  Two parts (Part 4 
and 5) of Exam 1 assessed student knowledge on array-based lists.  
Part 4 assessed the ability of students to trace how the contents of 
an ArrayList are modified when passed to a mystery method.  
There were three questions in Part 4; each question was evaluated 
separately and all three were evaluated together.  Part 5 assessed 
the ability of students to write a method for an ArrayList class.   

Exam 2 had two parts (Part 3 and Part 5) assessing student 
knowledge on linked lists.  Part 3 evaluated students’ ability to 

work with linked nodes.  Students wrote code to transform a 
before picture of linked nodes into an after picture of linked 
nodes.  Part 5 assessed the ability of students to write a method for 
a LinkedList class. 

Exam 1 and Exam 2 have similar structure, but the questions 
differed between sections to minimize sharing of knowledge.  For 
example, Part 5 for Section 001 asked students to write 
indexOf(); Part 5 for Section 002 asked students to write 
lastIndexOf(). Both sections took a common final exam, 
called Exam 3. The final exam included a question on 
implementing an array-based stack and a linked list-based queue.  
The final exam grade was also considered as a whole to determine 
any difference in learning between sections.   

Each exam part and sub question were tested for normality using 
the Shapiro-Wilk Normality Test in the R Project for Statistical 
Computing [18].  All exam items were nonparametric with p-
values < 0.01.  Due to the nonparametric distribution of the data 
sets, a two-sample, non-paired, two-sided Wilcoxon test was used 
to compare the scores on each exam item between the two 
sections using R.  A two-sided test will determine if there is a 
difference between the distributions in each section. Table 4 
summarizes the results.  

The gray cells in Table 4 show the four exam items where the 
distributions of the sections are different at a statistically 
significant confidence level of 95%.  The first three gray cells are 
for Part 4 of Exam 1, which was a question about using the data 
structure as a client and not about implementing part of the data 
structure.  The last gray cell is for Exam 2 Part 3, which was a 
question about manipulating linked nodes.   

For the statistically significant results in Table 4, we ran a one-
sided Wilcoxon test to determine if the intervention leads to an 
increase in exam item scores for the section that received the 
intervention.  Table 5 summarizes the results.   

Table 5: One-sided Wilcoxon Test on Significant Exam Items 

Exam 
Item 

Test p-value Lower 
CI 

Upper 
CI 

E1 P4 #8 001 > 002 0.999 -1.0 Infinity 
E1 P4 #9 001 > 002 0.992 -3.0E-5 Infinity 
E1 P4 001 > 002 0.996 -3.00 Infinity 
E2 P3 001 < 002 < 0.01 -Infinity -4.01E-5 
     

Our results show that Section 001, which completed the in-class 
labs on array-based lists did not outperform Section 002 on Exam 
1 Part 4.  When testing the hypothesis that Section 001 scores 
were greater than Section 002 scores, the p-value was strongly not 
significant.  A one-sided Wilcoxon test that switches the 

Table 4: Comparison of Exam Items 

Exam Item 
Total 
Points 

Section 001 Section 002 
W p-value 

Lower 
CI 

Upper 
CI 

Diff. in 
Loc. Mean SD Med. Mean SD Med. 

E1 P4 #8 5 3.63 1.56 5 4.35 1.45 5 1064.5 < 0.010 -0.99 -3.7E-6 -5.3E-5 
E1 P4 #9 5 4.18 1.07 5 4.57 1.09 5 1167.0 0.016 -5.7E-5 -3.8E-5 -5.0E-5 
E1 P4 #10 5 2.63 2.40 2 3.45 2.18 5 1257.5 0.149 -9.9E-6 8.2E-5 -4.7E-6 
E1 P4 15 10.45 3.97 10 12.37 3.74 14.5 1054.5 < 0.010 -3.99 -3.3E-5 -1.99 
E1 P5  15 17.76 4.00 20 18.25 4.09 20 1294.0 0.233 -4.9E-5 3.5E-5 -5.1E-5 
E2 P3 16 8.43 5.85 8 11.80 6.41 16 955.0 < 0.010 -7.99 -4.5E-5 -3.99 
E2 P5 20 11.80 4.14 12 12.58 4.21 13 1257.5 0.412 -2.99 0.99 -0.99 
E3 Array 10 8.31 2.45 9.5 8.46 2.49 9.5 1096.5 0.313 -0.50 5.9E-5 -1.8E-5 
E3 Linked 10 8.36 2.53 9.5 8.81 2.45 10 1069.5 0.221 -0.49 1.8E-5 -4.4E-5 
Exam 3 105 85.02 29.17 94.5 87.23 28.92 97.5 1323.0 0.372 -6.00 2.00 -1.50 

 



alternative hypothesis does lead to statistical significance, which 
means that Section 002 outperformed Section 001 on Exam 1 Part 
4. The only place where the alternative hypothesis of a section 
with the in-class lab intervention outperforming the other section 
on the related exam material was for Exam 2 Part 3 where Section 
002 outperformed Section 001.  However, alone, that result is not 
strong enough to demonstrate higher gains in learning on topics 
taught using in-class lab activities.  Our results show that there 
was no major difference in student learning as measured by exams 
when comparing active learning lectures with in-class 
laboratories. 

4.2 Engagement 
We measured engagement through classroom observations by 
graduate students and a colleague participating in a seminar on 
Teaching and Learning. Each observer used an observation 
protocol [10].  All students attending class during the observation 
were observed.  The observation protocol included no identifying 
information about students and consenting students were 
unknown during the observation period. 

Table 6 summarizes the observation counts for the number or 
average number of instances of off topic behavior during lecture 
and exercise portions of the class and the number of instances 
when students engaged with the teaching staff. Each observer 
used the observation protocol in a slightly different manner.  
Therefore, each observation period will be described in the 
following sections followed by a discussion of common metrics 
and themes.  The three observations that considered the average 
over five-minute intervals, Observations 2, 4, and 8, were 
completed by the same observer and the summation of the off-
topic observations would significantly skew results.  The average 
is more representative of the values reported by other observers. 

4.2.1 Observation 1: Array-Based List 1 In-Class 
Lab 
Section 001 completed the array-based list 1 in-class lab.  The 
observer recorded counts every 5 minutes in two groups: 1) 
general disengagement and 2) those looking at a Google 
document.  The students in the second group were likely on task 
since that day’s activity was provided in a Google document, so 
they are not considered in the summary.   

During the initial lecture in the first five minutes of class, there 
were five instances of disengaged behavior.  During the in-class 
lab, there were seven instances of disengaged behavior.  Students 
asked the teaching staff for help 32 times during the class period. 

4.2.2 Observation 2: Array-Based List 1 Active 
Learning Lecture 
Section 002 received a standard active learning lecture on the first 
half of the materials on array-based lists.  The observer focused on 
the number of instances of on and off topic behavior in five-to-
ten-minute windows.  The window was then marked as lecture or 
exercise.  In a class with attendance of 78 students and with 62 
visible laptop screens, an average of 61 students were off topic 
during lecture and an average of 50 students were off topic during 
the active learning exercises.  The teaching staff was asked for 
help 12 times during the class period. 

4.2.3 Observation 3: Array-Based List 2 In-Class 
Lab  
Section 001 completed the array-based list 2 in-class lab.  Two 
observers attended the class and each recorded notes on one-half 
of the class.  During the initial five-minute lecture portion of the 
class, there were 10 instances of disengaged behavior.  There were 
43 instances of disengaged behavior during the in-class lab.  
Students or student teams asked for help over 50 times. 

4.2.4 Observation 4: Array-Based List 2 Active 
Learning Lecture 
Section 002 received a standard active learning lecture on the 
second half of the materials on array-based lists.  The observer 
focused on an estimate of the number of off topic students by 
observing screens visible from his spot and creating a class wide 
estimate of the number of students off topic during five-minute 
windows.  In a class with attendance of 72 students, 65 total 
screens, and 30 screens used for the estimate, an average of 46 
students were disengaged during the lecture portion of the class.  
An average of 16 students were disengaged during the think-pair-
share exercises. Question counts were not recorded. 

4.2.5 Observation 5: Linked List 1 Active Learning 
Lecture 
Section 001 received a standard active learning lecture on the first 
half of materials on linked lists.  No observer attended. 

4.2.6 Observation 6: Linked List 1 In-Class Lab 
Section 002 completed the linked list 1 in-class lab.  The observer 
recorded 5 instances of disengaged behavior during the short 
introductory lecture and 10 instances of disengaged behavior 
during the activity and reflection portion of the class.  The 
observer grouped together the likely 25 or more students who 
were observed as disengaged during the reflection portion of the 
class as a single incident.  There were 33 instances where the 
teaching staff was called for help. 

4.2.7 Observation 7: Linked List 2 Active Learning 
Lecture 
Section 001 received a standard active learning lecture on the 
second half of materials on linked lists.  The observer noted that 
he could only see half of the class during this observation. 
Reported numbers are doubled with the assumption that the 
observed half is indicative of the whole.  There were and 
estimated 52 instances of disengaged behavior during the lecture 
portion of the course by an estimated 20 unique students.  During 
the exercises, there were an estimated 54 instances of disengaged 
behavior by an estimated 18 unique students.  Only two students 
asked for help during the class period. 

4.2.8 Observation 8: Linked List 2 In-Class Lab 
Section 002 completed the linked list 2 in-class lab.  The observer 
counted 57 students with 50 laptops, 26 of which were visible 

Table 6: Observation Summary 

Obs. Class 
Type 

# Off Topic 
Lecture 

# Off Topic 
Exercise 

Questions of 
Teaching 

Staff 
1 Lab 5 7 32 
2 Lec. 62 49 12 
3 Lab 10 43 50 
4 Lec. 46 16 ---- 
5 Lec. ---- ---- ---- 
6 Lab 5 10 33 
7 Lec. 52 54 2 
8 Lab 16 5 ----- 
Lab Average 9 16.3 38.3 
Lec. Average 53.3 39.7 7 
Lec. / Lab 5.9 2.4 0.2 

 

 



during the observation.  The number of disengaged students was 
estimated from the visible laptops.  An average of 16 students 
were off topic during the lecture portion of the course and an 
average of 5 students were disengaged during the in-class lab 
portion of the course. Question counts were not recorded. 

4.2.9 Observation Summary  
For active learning lectures, students were over five times more 
likely to display off topic behavior during lecture portions of the 
class and over two times more likely to display off topic behavior 
during the exercise portion.  During in-class labs, students were 
over five times more likely to engage with the teaching staff by 
asking questions.  

These results confirm the instructor’s reflection on each of the 
class periods: students engaged with their peers, engaged with the 
lab activity, and asked more questions of the teaching staff than 
then in the active learning lectures.  However, the observers just 
counted the number of questions and interactions.  The missing 
piece of the observation is the content of the questions.   

Many of the questions, especially for the early in-class labs like 
the un-observed Java Collections Framework lab, involved 
technology.  The first Java Collections Framework in-class lab 
had a problem with the provided library.  The provided library 
was compiled and jar’ed using Java 1.8, and many students only 
had Java 1.7 installed.  Due to the volume of questions, the 
instructor was unable to resolve the issue until the very end of 
class.  The other section had fewer library issues, but had many 
tool and technology questions.  Another common question during 
the first few in-class lab activities was how to handle a fast-
forward error from GitHub.  These questions led to the creation of 
a “Troubleshooting” section at the end of each lab so that the 
instructor could quickly refer students to the section and move on 
to answer other questions.   

The benefit of the in-class lab experience was that students were 
able to resolve or consider alternative solutions to problems 
quickly, especially problems associated with tooling, through the 
help of their peers and the teaching staff. However, since many of 
the student questions focused on tooling, students may not have 
engaged deeply with the covered course topics due to the 
difficulties with the tools.  As the labs progressed, students asked 
more questions about the lab topics, but no counts of specific 
question types were recorded during the observed classes.  While 
students were more engaged, as measured by off-topic behavior 
and teaching staff interactions during in-class labs, the 
engagement was not solely on the course topics.  

5. THREATS TO VALIDITY 
Due to the nature of classroom research, there are several threats 
to validity that constrain the generalizability and application of 
our results [4, 8]. 

5.1 External Validity 
External validity describes the generalizability of our results for 
the study population [8].  Our study was restricted to two sections 
of the same course taught by the same instructor in the same 
semester and even at the same time of day.  While these study 
constraints allowed for an additional level of control and an 
increase of internal validity, the constraints do limit the 
generalizability of this work to other CS1.5 classes, courses, and 
institutions.  Due to the nature of cohorts, there may be 
differences between results in fall and spring offerings of the same 
course.  Replications of the study in future CSC216 classes, other 
CS1.5 courses, and at other institutions would increase the 

generalizability of the work.  A replication package [20] with the 
study materials is available upon request, but some materials, 
including labs, initial survey, and observation protocol, that would 
not affect future studies are available [10].   

5.2 Internal Validity 
Internal validity is maximized through the reduction of bias and 
concerns the quality of our conclusions [8].  The study does have 
selection bias: students selected their own sections.  However, an 
initial survey of students, conducted as part of the collection of 
informed consent, shows that the characteristics of the sections 
were roughly the same.  Table 2 and Table 3 show each section 
had participants with similar characteristics, which minimizes 
sample bias. 

There are several possible confounding factors.  Students given 
one intervention may have shared that material with students 
taught using the control.  Additionally, since only a portion of the 
course incorporated in-class labs, any effect may have been too 
small to measure.  Additional studies with more in-class labs that 
span the breadth of course topics appropriate for lab exercises 
would increase internal validity of future studies. 

We minimized differential attrition bias by including consenting 
participants that soft dropped the course.  Students that dropped or 
withdrew did not complete any coursework evaluated in the study.   

There is the possibility of experimenter bias because the author 
created the study and taught both sections of the course.  The 
author tried to reduce experimenter bias by requesting that her 
Ph.D. student hold all informed consents until the end of the 
semester so that she would not know who consented to participate 
in the study.  Due to the nature of the classes in the treatment and 
control, there were differences in how the author presented the 
materials to each section, but she tried to remove her preferences 
for lecture success from discussions with the students.  Future 
studies will include other faculty to reduce experimenter bias. 

5.3 Construct Validity 
Construct validity describes how well the underlying concept of 
interest, in our case student learning and engagement, are 
empirically investigated [8].  Exam questions measured student 
learning.  For the first two exams, each section had similar, but 
different questions.  On exam 1, Section 001 wrote the 
indexOf() method and Section 002 wrote the 
lastIndeOf() method for an array-based list.  The questions 
were similar, but iterating through a list in reverse may be 
conceptually harder.  That means the exam questions on Exams 1 
and 2 may not equally assess student learning of the topic.  
Students took a common final, so those questions provide a 
common comparison point.  

Another concern is the exam questions and the grading rubrics 
themselves.  The exam questions and the rubric may not fully 
evaluate student learning.  The department’s assessment 
coordinator has assessed the final exam, and there is no current 
concern that the exam is not measuring student learning. 

The initial survey asked students about their prior experience with 
tooling and about their self-efficacy when programming and 
testing [4].  There were additional questions about enjoyment [4], 
ways of learning, goals, and demographics.  The addition of 
course and time information on the tooling question may provide 
additional confusion to students about if the relationship is an 
“and” or an “or” relationship.  However, the results of that 
question were what we expected from courses typically made up 
of traditional aged college freshman and sophomores.  The 



questions on efficacy and enjoyment were pulled from literature 
[4], but are not to our knowledge validated instruments.  Future 
studies may consider a preliminarily validated instrument by Scott 
and Ghinea [19].  All other questions were generated by the 
author and may be flawed instruments.  Further validation of the 
survey instrument is needed to determine if the questions measure 
what they are supposed to measure, but those questions do not 
influence the results of this study. 

The intention of the observation protocol was to measure how 
many times and how many students were off task.  Additionally, 
the protocol measured the number of times the teaching staff 
engaged with students about course material.  However, 
inconsistent use by observers is a construct threat.   Many, but not 
all, observers measured the counts at five-minute intervals.  
Future iterations of the protocol will create a timeline for counts 
and will include summary information like the number of students 
in attendance.  That instrument will allow for better summary 
results from multiple observations and multiple observers. 

6. DISCUSSION 
The goal of our research is to increase student learning and 
engagement through in-class laboratories on linear data structures.  

Research question 1 asked do in-class laboratories on linear data 
structures increase student learning on linear data structure exam 
questions when compared to active learning lectures?  Our results 
show that in-class laboratories on linear data structures did not 
lead to an increase in student learning over active learning 
lectures.  Student learning when using in-class labs and active 
learning lectures is the same as measured by the linear data 
structure questions on the final exam.  Ultimately, the result is not 
unexpected since both think-pair-share exercises as used in the 
active learning lectures and in-class labs are both active learning 
techniques that both lead to increased learning.  Overall, the 
results suggest that using in-class laboratories does no harm to 
student learning. Future work may formalize the team portion of 
the in-class labs to use lightweight teams [16], which may 
increase student learning. Additional studies will strengthen our 
knowledge. 

Research question 2 asked do in-class laboratories on linear data 
structures increase student engagement when compared with 
active learning lectures?  The observations show that most 
students engaged with the material during in-class lab sections 
while a large portion of students were off topic during active 
learning lectures.  Additionally, over five times as many students 
or student teams asked questions during in-class labs than during 
active learning lectures.  Due to inconsistent and estimated 
measures during the observations, we cannot attempt any 
statistical analyses on the data.  The raw numbers are highly 
suggestive that in-class labs were more engaging.  However, 
many of the student questions involved tooling used for the in-
class labs rather than questions on in-class lab topics. While 
students were more engaged during in-class labs, the engagement 
was not solely on the lab topics, which may contribute to the null-
results on student learning.   Future studies with better observation 
protocols, including categorization of student interactions by 
teaching staff, can further answer our research question. 

Prior research on active learning has shown an increase in 
completion rates [9], where the completion rate is the percentage 
of students who pass the course. Grade distributions for courses at 
NC State are protected data, so we cannot compare or comment 
on how completion rates for the Fall 2014 offerings of CSC216 
compare to prior offerings or other core undergraduate computer 

science courses at NC State.  While we cannot compare publically 
against our own historical data, we can compare with reported 
completion rates and use these measures as a baseline in future 
studies that build on this work.  Bennedsen and Caspersen [3] 
report a 67% pass rate for CS1 courses in 2007 and Watson and Li 
[22] report a similar completion rate of 67.7% for CS1 courses in 
2014. We expect that a CS1.5 course would have a similar 
completion rate due to an overlap with traditional CS1 topics. 
Freeman et al., [9] found a completion rate of 78.2% with active 
learning compared to 66.2% completion rate for traditional lecture 
courses. Seventy-two percent of students completed CSC216 in 
Fall 2014 with a C or higher.  CSC216’s completion rate of 72% 
is lower than the completion rate for active learning classes 
reported by Freeman et al. [9], but not as low as the completion 
rate for traditional lecture courses. The completion rate for 
CSC216 is higher than the completion rates from CS1 literature 
[3, 22].  Additional reportable data about prior semesters and 
comparison with future semesters will identify if we are making 
progress toward increasing the rate of student completion in 
CSC216. 

7. CONCLUSIONS AND FUTURE WORK 
Overall, the use of in-class labs was successful in maintaining 
student learning and increasing student engagement.  There were 
several lessons learned from incorporating in-class labs into 
CSC216.  Students were expected to watch videos about the 
lecture material before attending class to complete the in-class lab. 
Based on questions received and the number of students watching 
the videos at the start of the class, most students did not prepare 
adequately for class. One solution is to have students take a quiz 
on the material for a grade [5].  Another solution is to restructure 
the array-based list and linked list lectures so that the first class 
period on the topic will be a lecture and the second class period 
will be devoted to the in-class lab activity for implementing a 
generic version of the data structure.  

We may not have seen gains in student learning since only six 
lectures of a 28-lecture course were changed to in-class labs. 
Additional in-class labs will be developed for advanced OO, 
stacks and queues, FSMs, recursion, and GUIs. Future work will 
also consider the identification and transfer of the in-class lab 
software engineering best practices to out-of-class assignments 
and future coursework.   

The introduction of in-class labs addressed a student request in 
evaluations for more time programming during class, but we 
would still like to increase student learning with a long term goal 
for increasing the completion rate.  A departmental task force of 
CSC216 instructors and other undergraduate leadership is 
working on increasing student support and moving the course to a 
lab-based delivery mechanism.  In-class labs developed or refined 
for the next academic year will be assessed as a baseline for 
comparison to the move to a lab-based course in AY16-17.  
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