
An Empirical Study of In-Class Laboratories on Student
Learning of Linear Data Structures

Sarah Heckman
North Carolina State University

Raleigh, NC
sarah_heckman@ncsu.edu

ABSTRACT
Active learning increases student learning through collaborative
engagement with materials during class time. A CS1.5 course at
NC State, CSC216, uses active learning lectures involving short
simplified think-pair-share in-class exercises to engage students
with course materials. However, students still struggle with the
course materials and several students do not successfully complete
the course on their first attempt. To increase student learning and
engagement, we conducted a quasi-experimental study
incorporating in-class labs into two sections of CSC216 during the
linear data structures unit in the Fall 2014 semester. Both sections
completed in-class labs on the Java Collections Framework and
iterators. One section completed in-class labs on array-based lists;
the other section completed in-class labs on linked lists, in a
counter-balanced study design. The active learning lecture
delivery was used for the control section and an Exam was
administered between the array-based list and linked list topics.
Overall, we found no significant difference in student learning on
array-based and linked lists as measured by the final exam.
Students displayed half as much disengaged behavior during in-
class labs and were five times more likely to ask for help from the
teaching staff during in-class labs.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms
Experimentation

Keywords
In-class labs; empirical computer science education; linear data
structures; CS1.5

1. INTRODUCTION
Students struggle with the material in CSC216: Programming
Concepts – Java, a second semester CS1.5 programming course
for computer science majors and minors at North Carolina State
University. While a large majority of students successfully
complete CSC216 on a first or second attempt, many students
report difficulty with the coursework throughout the semester.

The prerequisite course of CSC216 is CSC116: Introduction to
Programming – Java, a first semester introductory programming
course taught in Java1 with a use objects early, write objects late
paradigm. CSC116 is an integrated-lecture lab with at most 33
students in each of seven or eight sections. The class meets twice
a week for 110 minutes and one instructor and two TAs are
available to help students. CSC216 moves students into two large
lecture sections of 70-100 students. There is one instructor per
section (sometimes the same instructor for both sections) and
three to four TAs pooled for the two sections. A common request
on end of semester evaluations for CSC216 is an increase in the
amount of in-class programming practice similar to the level in
CSC116.

Research has shown that active learning, defined by Freeman et
al. [9] as “engaging students in the process of learning through
activities and/or discussion in class, as opposed to passively
listening to an expert,” increases student learning through
collaborative engagement with materials during class time [1, 5, 7,
9, 13, 15]. CSC216 currently incorporates a simplified version of
the active learning technique, think-pair-share [7, 14], where the
emphasis is on the pair and share. However, many students still
struggle in the course, and we hypothesize that active learning
practices that involve larger problems would increase student
learning and engagement.

The study in this paper reports on the use of in-class laboratories,
as an inverted or flipped classroom experience [15], for a unit on
linear data structures in CSC216. The goal of our research is to
increase student learning and engagement through in-class
laboratories on linear data structures. We conducted a counter-
balanced study on the use of in-class laboratories on two sections
of CSC216 taught by the author at the same time on different days
during the Fall 2014 semester. We found no significant difference
in student learning on linear data structure topics; however, we
found a large increase in student engagement measured by counts
of off topic behavior and student interactions with teaching staff
as reported by external observers. However, many of the
interactions with students during in-class labs were focused more
on the technology used in the course than on the lab topics.

We contribute to the growth of theory in computing education
research by building on the foundations of theoretical work [17] in
active learning [1, 5, 7, 9, 13, 15]. Additionally, our work builds
on a foundation of Bandura’s self-efficacy theory [2]. By
reporting null-results for learning, we provide more data about the
landscape of active learning interventions [21]. The contributions
are:

1 Oracle’s Java may be found at:
http://www.oracle.com/technetwork/java/index.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICER '15, August 9-13, 2015, Omaha, NE, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3630-7/15/08…$15.00.
DOI: http://dx.doi.org/10.1145/2787622.2787713

 A replicable study methodology for assessing student
learning and engagement when using in-class laboratory
assignments.

 Additional data on the effectiveness of active learning
activities, like think-pair-share exercises and in-class labs, on
student learning and engagement.

This study is the first in a series of interventions focused on
increasing student learning, engagement, and eventually
completion through the incorporation of various active learning
techniques and software engineering best practices into CSC216
coursework.

The rest of this paper is organized as follows: Section 2 describes
related work; Section 3 describes the study methodology; Section
4 reports the results; Section 5 provides the threats to validity;
Section 6 is a discussion of findings; and Section 7 concludes and
presents future work.

2. RELATED WORK
A large meta-analysis on active learning in science, engineering,
and mathematics found that active learning activities like think-
pair-share [7, 14] and inverted or flipped classrooms support
students learning, increase engagement, and reduce failure rates
[9]. Freeman et al., [9] found that student performance on exams
or concept inventories increased almost half of a standard
deviation when using active learning as compared to traditional
lecture. Kothiyal et al. [14] report an average 83% student
engagement in lecture when using think-pair-share in CS1. These
results are useful comparison points for our results.

Our delivery of in-class labs in CSC216 was modeled on the
inverted or flipped classroom. Many CS researchers have
investigated inverted classroom models in classes at various
levels. Amresh et al., [1] conducted a preliminary study on the
effectiveness of a flipped classroom in a CS1 for majors and non-
majors. They found that students in the flipped sections of the
course earned higher average scores. Student efficacy also
increased, but the increase may be from other factors than just the
course flip. Latulipe et al. [16] included lightweight teams and
gamification in a flipped media computation class. Results show
that lightweight teams enhanced student learning and increased
course engagement. We used randomly assigned teams for in-
class lab activities in CS1.5, but not the full lightweight team
strategy.

Campbell et al., [5] reported on a study of inverting a CS1 course.
They found that while fewer students attended the lectures in the
inverted offering, more students completed the preparatory work
including videos and quizzes, likely because the preparatory work
counted for credit. Students also reported in a survey that they
enjoyed the inverted model, but that they felt the course took more
time. The authors found no significant difference in learning
when compared with a traditional offering of the course. Horton
et al., [12] continued the work by comparing a traditional and
inverted CS1 course and reported similar pass rates, but a
statically significant difference on final exam grade as a measure
of student learning. We consider similar metrics for evaluation of
our comparison of active learning lectures and in-class labs.

3. STUDY METHODOLOGY
The goal of our research is to increase student learning and
engagement through in-class laboratories on linear data structures.
We considered the following research questions:

RQ1: Do in-class laboratories on linear data structures increase
student learning on linear data structure exam questions
when compared to active learning lectures?

RQ2: Do in-class laboratories on linear data structures increase

student engagement when compared with active learning
lectures?

Several of the artifacts used for the study are available as a partial
replication package [20] including the initial survey, observation
protocol, and in-class laboratories and related materials [10].
Other materials, including informed consent, exam questions, and
projects are available from the author by request.

3.1 Study Context
We conducted the study in CSC216: Programming Concepts –
Java during the Fall 2014 semester. CSC216 is a second semester
CS1.5 computer science course, which covers advanced object
oriented programming, introductory software engineering, linear
data structures, finite state machines, recursion, GUIs, sorting, and
searching. The class meets twice a week for 75 minutes. Course
grades are a combination of three tutorials [11], three two-part
programming projects, in-class exercises, and three examinations.
The author taught two sections of CSC216 during the Fall 2014
semester. Both sections met in large lecture halls with stationary
desks and chairs.

In CSC216 students work with a number of tools to support the
learning outcomes related to software engineering. Students
develop assignments in the Eclipse Juno2 integrated development
environment using Java v1.7 with a suite of Eclipse plug-ins.
Unit tests are written with JUnit v43 and coverage is measured by
EclEmma4, which uses the Jacoco5 code coverage library. Static
analysis tools, FindBugs6, PMD7, and CheckStyle8, check for
misuse of the Java language and styling problems. Student
programming assignments are submitted for evaluation by
pushing the project to our university’s enterprise GitHub9. Student
jobs are evaluated automatically with every push to GitHub by
using the continuous integration server Jenkins10. Each student
has a Jenkins job for their project and the job will build the
student project, run the student’s tests instrumented for coverage,
run the static analysis tools, and run a suite of teaching staff unit
tests, similar to Web-CAT [6]. Students are introduced to these
technologies through a series of tutorials [11].

3.2 Study Participants
Students registered for their section of CSC216 on a first-come,
first-served basis. Table 1 provides an overview of each section.
We exclude counts on minority students due to low numbers that
may lead to identification. The author solicited informed consent
from students on the first day of class (NC State IRB #4169).
Students opted into or out of the study and completed a survey.
After the solicitation for participation, the author left the room and
the author’s Ph.D. student collected informed consents and

2 Eclipse may be found at: http://www.eclipse.org/.
3 JUnit may be found at: http://junit.org/.
4 EclEmma may be found at: http://www.eclemma.org/.
5 Jacoco may be found at: http://www.eclemma.org/jacoco/.
6 FindBugs may be found at: http://findbugs.sourceforge.net/
7 PMD may be found at: http://pmd.sourceforge.net/.
8 CheckStyle may be found at: http://checkstyle.sourceforge.net/.
9 GitHub may be found at: https://github.com/.
10 Jenkins may be found at: https://jenkins-ci.org/.

surveys. To reduce bias, the author’s Ph.D. student held all
informed consents and surveys until final grade submission.

Table 1: Information about Participants
Metric Section 001 Section 002
Enrolled 85 102
Participants
(completed course)

49 60

Dropped/Withdrawn
(consenting only)

3 4

Women 9 10
Meeting Time TH 2:05p-3:35p MW 2:05p-3:35p

Students were given an introductory survey about their
background and efficacy when completing informed consent [10].
These measures characterize the consenting populations and show
that the participants are similar between the two sections. Table 2
shows the difference between Section 001 and Section 002
percentages on prior experience with using course technology as
listed in Section 3.1. A positive number implies that Section 001
had a higher percentage of responses at that level of experience
for the given tool and a negative response implies that Section 002
had a higher percentage. A difference of 0% shows that the
populations were the same. For each possible Likert response, we
characterized the prior experience measure by providing
guidelines of the response’s meaning in terms of the number of
classes and work experience. For most responses, there was less
than a 10% difference between sections. The only responses with
a greater than 10% difference are shaded in gray. More students
in Section 002 responded that they had “some” experience with
Eclipse. Students in Section 001 had more students with “no”
experience with the Eclipse Debugger and Static Analysis;
however the Section 002 experience varies across the categories.
These results overall show a relatively common set of prior
experiences with course tooling.

Another factor of student success is student self-efficacy or self-
belief [2]. Bandera defines an efficacy expectation as “the
conviction that one can successfully execute the behavior required
to produce the outcomes” [2]. Computer science students know
the steps to complete a programming assignment successfully, but
may not believe that they have the ability to complete the task.
Scott and Ghinea [19] found a relationship between a student’s
self-belief about their programming aptitude and their
programming practice behavior, so self-efficacy is important for
student success. We surveyed students on their confidence (Table
3). The self-efficacy questions are adapted from examples given

by Bishop-Clark and Dietz-Uhler [4], but future studies may
consider a preliminarily validated instrument by Scott and Ghinea
[19]. Cells in gray are where there is more than a 10% difference
between Sections 001 and 002 on their agreement with a given
statement. Agreement with statements A, D, and E suggest
confidence while agreement with statements B and C suggest a
lack of confidence. The results show that both sections have a
similar level of confidence. Section 002 had a higher percentage
of students that strongly agree with the statement “I could learn
programming and testing”. A higher percentage of students in
Section 001 were neutral on statements B and C, suggesting that
they may have less self-efficacy about their programming skills.

 Table 3: Programming and Testing Confidence

 Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

A -17% 17% 0% 0% 0%
B 2% -1% 13% -13% -1%
C 0% -1% 10% -11% 2%
D 4% -21% 9% 9% 0%
E 2% -14% 14% 3% -5%

A: I am sure that I could learn programming and testing.
B: I am not good at programming and testing.
C: I am not the type to do well at programming and testing.
D: I have a lot of self-confidence when it comes to programming and
testing.
E: Generally, I have felt secure about computer programming and testing.

3.3 Study Setup
The use of active learning activities, like think-pair-share
exercises and in-class labs, are proven to increase student learning
[9, 13]. To minimize the disadvantage to one group of students
through the intervention of in-class labs, we used a counter-
balanced study design so that each section of the course would
have an opportunity to receive the intervention and we could
measure student learning on each topic. Six lectures on linear
data structures out of the 28 lectures in CSC216 were converted to
in-class lab activities (a seventh in-class lab involving code
inspection was also done, but it did not directly relate to linear
data structures and is not considered in this paper). The linear
data structures unit was selected because two of the topics, array-
based and linked lists, are very similar and would work well in a
counter-balanced study design as shown in Figure 1.

The gray boxes in Figure 1 represent class periods where students
participated in the in-class lab intervention. The first and last
labs, Lists (an overview of using the Java Collections Framework)
and Iterators, were common for both sections. Section 001
received array-based list instruction as in-class labs and linked list
instruction with active learning lectures. Section 002 received
array-based list instruction with active learning lectures and linked
list instruction as in-class labs. The details about active learning
lectures are in Section 3.4 and details about the in-class labs are in
Section 3.5.

Administration of Exam 1 occurred between the array-based list
and linked list class periods. Two parts of the exam assessed
student learning of array-based lists. Two parts of Exam 2
assessed learning of linked nodes and linked lists. The final exam
included a question on both array-based lists and linked lists.

To assess student engagement, graduate students and a colleague
participating in a graduate seminar on Teaching and Learning in
Computer Science observed one or more of the class meetings.
The observations were conducted on the eight class periods for
array-based lists and linked lists – four classes for each section.

Table 2: Prior Experience with Course Tooling

 None
Very
Little

Some
Quite
a Bit

Very
Much

of Classes None < 1 < 2 < 4 > 4

Work Exp. None
< 6

mos.
< 2

years
< 4

years
> 4

years
Java 0% 0% 0% 0% 0%
Eclipse 9% 5% -11% -2% -2%
Eclipse Debugger 15% -8% -5% 0% -2%
Static Analysis 14% -7% -7% 0% 0%
Unit Testing 5% -2% -1% -2% 0%
Code Coverage 8% -4% -3% 0% 0%
Version Control -3% 7% -3% -3% 2%
Continuous
Integration

-1% -1% 0% 0% 2%

Of the eight class periods, seven were observed. The provided
observation protocol measured the off topic students and student’s
engagement with the teaching staff [10]. Off topic behavior was
defined as “checking a non-course related website, working on a
project or other assignment, checking their cell phone, etc.” We
asked observers to count the following items:

 number of instances of off topic behavior during lecture
portions of the class

 number of instances of off topic behavior during exercise
portions of the class

 number of students off topic during lecture
 number of students off topic during exercises
 number of times a member of the teaching staff is called for

help
 number of students or student teams asking for help

3.4 Active Learning Lectures
CSC216 classes consist of lectures that are broken up with one or
more simplified think-pair-share active learning exercises [7, 13].
Active learning exercises engage students with the materials just

covered in lecture. Students are encouraged to work on the
exercises with their neighbors (pair) and submit exercise answers
through Google Forms (share). The Google spreadsheet backing
the form updates automatically with new responses so the
instructor can identify student misconceptions and address them
after the exercise closes. The active learning exercises count as
part of the exercise portion of the student’s final grade. Students
earn at least half credit for attempting the exercise.

The study control are the active learning lectures on array-based
lists and linked lists. Each topic had two class periods devoted to
instruction, with seven associated think-pair-share exercises per
topic split across the two class periods. The first lecture provides
a general overview of the data structure implemented as a list of
integers. The second lecture provides instruction about how to
implement the data structure using generic types.

3.5 In-class Laboratories
Students completed four of the six in-class laboratories depending
on their section. Before the in-class lab, students were expected to
watch a short 10-15 minute video about the topic of the lab
activity. As students entered the classroom, they joined their
groups by finding the paper tent on the desk with their team
number on it. The class meeting began with a short lecture
introduction to the lab activity, and then students started the lab
activity. The class concluded with a reflection exercise and a
reminder to complete the activity outside of class. The in-class
labs were intended to be counted in the exercise portion of the
student’s grade, but were excluded by TAs during exercise grade
calculation.

Students were randomly placed on teams of three and were
assigned a GitHub repository for their in-class lab work separate
from their GitHub repositories for submitting projects. Students
with missing teammates were reassigned to another team during
class to minimize students working on the in-class labs alone.

The design of the in-class laboratories involved development
exercises using the software engineering tools for the class. Each
lab, except the first lab, was broken into small tasks. The first lab
was a Power Point slide, but now the lab is available as a Google
doc like all the other labs. At the end of each task, the instructions
stated students should run their tests, comment their code, and
push to GitHub. All lab materials, including slides, videos, and
lab activities are available at [10].

3.5.1 Java Collections Framework In-class Lab
The goal of the Java Collections Framework lab is the creation of
a suite of unit tests appropriate for testing a linear data structure.
By writing unit tests in the first in-class lab, the students practice
test-driven development and can use the tests to evaluate later
implementations of linear data structures. Students started with an
Eclipse project containing a jar’d implementation of an
ArrayList of Strings. A unit test skeleton and Javadoc of the
ArrayList implementation contained the instructions for
writing sufficient unit tests for 100% condition coverage of the
ArrayList implementation. The instructions for this in-class
lab were initially provided on a slide projected for both sections.
Students struggled with projected instructions, so future labs had
more detailed instructions. The Java Collections Framework in-
class lab has been revised for future offerings.

Figure 1: Study Design

Exam 1

Lists

Array‐based
Lists

Array‐based
Lists

Array‐based
Lists

Array‐based
Lists

Linked Lists

Linked ListsLinked Lists

Linked Lists

Iterators

Exam 2

Section 001 Section 002

3.5.2 In-class Lab 1 for Lists
The goal of Part 1 of the ArrayList and LinkedList labs is
to write an array-based or linked list of Strings. Students start by
copying and refactoring their tests from the Java Collections
Framework lab into a new test file for verifying their List
implementation. Students then work on standard list
functionality, state, constructor, size(), get(), add(),
remove(), and set(), with reminders to document their
code, run their tests, push to GitHub, and switch drivers.

After implementing the major functions of the List class,
students evaluate their test coverage on their solution and work on
a stretch goal of writing a program that uses the List.

3.5.3 In-class Lab 2 for Lists
The goal of Part 2 of the ArrayList and LinkedList labs is
to write a generic list. Students start from the previous lab’s code
and refactor both their tests and their implementation to work for
any type of object.

3.5.4 Iterators In-class Lab
The goal of the Iterators lab is for students to implement a
LinkedList by extending AbstractSequentialList.
The standard List methods in AbstractSequentialList
are implemented in terms of an Iterator. Students must write
a custom Iterator for AbstractSequentialList to work.
Students continue to use their tests from the Java Collections
Framework lab to verify their solution.

4. STUDY RESULTS
The following sections outline results of the in-class lab activities
on student learning of linear data structures and student
engagement.

4.1 Learning on Linear Data Structures
Three written examinations measured student knowledge on linear
data structures. We only report the summary exam data for
consenting students.

We administered Exam 1 between the array-based lists and linked
lists portions of the linear data structures unit. Two parts (Part 4
and 5) of Exam 1 assessed student knowledge on array-based lists.
Part 4 assessed the ability of students to trace how the contents of
an ArrayList are modified when passed to a mystery method.
There were three questions in Part 4; each question was evaluated
separately and all three were evaluated together. Part 5 assessed
the ability of students to write a method for an ArrayList class.

Exam 2 had two parts (Part 3 and Part 5) assessing student
knowledge on linked lists. Part 3 evaluated students’ ability to

work with linked nodes. Students wrote code to transform a
before picture of linked nodes into an after picture of linked
nodes. Part 5 assessed the ability of students to write a method for
a LinkedList class.

Exam 1 and Exam 2 have similar structure, but the questions
differed between sections to minimize sharing of knowledge. For
example, Part 5 for Section 001 asked students to write
indexOf(); Part 5 for Section 002 asked students to write
lastIndexOf(). Both sections took a common final exam,
called Exam 3. The final exam included a question on
implementing an array-based stack and a linked list-based queue.
The final exam grade was also considered as a whole to determine
any difference in learning between sections.

Each exam part and sub question were tested for normality using
the Shapiro-Wilk Normality Test in the R Project for Statistical
Computing [18]. All exam items were nonparametric with p-
values < 0.01. Due to the nonparametric distribution of the data
sets, a two-sample, non-paired, two-sided Wilcoxon test was used
to compare the scores on each exam item between the two
sections using R. A two-sided test will determine if there is a
difference between the distributions in each section. Table 4
summarizes the results.

The gray cells in Table 4 show the four exam items where the
distributions of the sections are different at a statistically
significant confidence level of 95%. The first three gray cells are
for Part 4 of Exam 1, which was a question about using the data
structure as a client and not about implementing part of the data
structure. The last gray cell is for Exam 2 Part 3, which was a
question about manipulating linked nodes.

For the statistically significant results in Table 4, we ran a one-
sided Wilcoxon test to determine if the intervention leads to an
increase in exam item scores for the section that received the
intervention. Table 5 summarizes the results.

Table 5: One-sided Wilcoxon Test on Significant Exam Items

Exam
Item

Test p-value Lower
CI

Upper
CI

E1 P4 #8 001 > 002 0.999 -1.0 Infinity
E1 P4 #9 001 > 002 0.992 -3.0E-5 Infinity
E1 P4 001 > 002 0.996 -3.00 Infinity
E2 P3 001 < 002 < 0.01 -Infinity -4.01E-5

Our results show that Section 001, which completed the in-class
labs on array-based lists did not outperform Section 002 on Exam
1 Part 4. When testing the hypothesis that Section 001 scores
were greater than Section 002 scores, the p-value was strongly not
significant. A one-sided Wilcoxon test that switches the

Table 4: Comparison of Exam Items

Exam Item
Total
Points

Section 001 Section 002
W p-value

Lower
CI

Upper
CI

Diff. in
Loc. Mean SD Med. Mean SD Med.

E1 P4 #8 5 3.63 1.56 5 4.35 1.45 5 1064.5 < 0.010 -0.99 -3.7E-6 -5.3E-5
E1 P4 #9 5 4.18 1.07 5 4.57 1.09 5 1167.0 0.016 -5.7E-5 -3.8E-5 -5.0E-5
E1 P4 #10 5 2.63 2.40 2 3.45 2.18 5 1257.5 0.149 -9.9E-6 8.2E-5 -4.7E-6
E1 P4 15 10.45 3.97 10 12.37 3.74 14.5 1054.5 < 0.010 -3.99 -3.3E-5 -1.99
E1 P5 15 17.76 4.00 20 18.25 4.09 20 1294.0 0.233 -4.9E-5 3.5E-5 -5.1E-5
E2 P3 16 8.43 5.85 8 11.80 6.41 16 955.0 < 0.010 -7.99 -4.5E-5 -3.99
E2 P5 20 11.80 4.14 12 12.58 4.21 13 1257.5 0.412 -2.99 0.99 -0.99
E3 Array 10 8.31 2.45 9.5 8.46 2.49 9.5 1096.5 0.313 -0.50 5.9E-5 -1.8E-5
E3 Linked 10 8.36 2.53 9.5 8.81 2.45 10 1069.5 0.221 -0.49 1.8E-5 -4.4E-5
Exam 3 105 85.02 29.17 94.5 87.23 28.92 97.5 1323.0 0.372 -6.00 2.00 -1.50

alternative hypothesis does lead to statistical significance, which
means that Section 002 outperformed Section 001 on Exam 1 Part
4. The only place where the alternative hypothesis of a section
with the in-class lab intervention outperforming the other section
on the related exam material was for Exam 2 Part 3 where Section
002 outperformed Section 001. However, alone, that result is not
strong enough to demonstrate higher gains in learning on topics
taught using in-class lab activities. Our results show that there
was no major difference in student learning as measured by exams
when comparing active learning lectures with in-class
laboratories.

4.2 Engagement
We measured engagement through classroom observations by
graduate students and a colleague participating in a seminar on
Teaching and Learning. Each observer used an observation
protocol [10]. All students attending class during the observation
were observed. The observation protocol included no identifying
information about students and consenting students were
unknown during the observation period.

Table 6 summarizes the observation counts for the number or
average number of instances of off topic behavior during lecture
and exercise portions of the class and the number of instances
when students engaged with the teaching staff. Each observer
used the observation protocol in a slightly different manner.
Therefore, each observation period will be described in the
following sections followed by a discussion of common metrics
and themes. The three observations that considered the average
over five-minute intervals, Observations 2, 4, and 8, were
completed by the same observer and the summation of the off-
topic observations would significantly skew results. The average
is more representative of the values reported by other observers.

4.2.1 Observation 1: Array-Based List 1 In-Class
Lab
Section 001 completed the array-based list 1 in-class lab. The
observer recorded counts every 5 minutes in two groups: 1)
general disengagement and 2) those looking at a Google
document. The students in the second group were likely on task
since that day’s activity was provided in a Google document, so
they are not considered in the summary.

During the initial lecture in the first five minutes of class, there
were five instances of disengaged behavior. During the in-class
lab, there were seven instances of disengaged behavior. Students
asked the teaching staff for help 32 times during the class period.

4.2.2 Observation 2: Array-Based List 1 Active
Learning Lecture
Section 002 received a standard active learning lecture on the first
half of the materials on array-based lists. The observer focused on
the number of instances of on and off topic behavior in five-to-
ten-minute windows. The window was then marked as lecture or
exercise. In a class with attendance of 78 students and with 62
visible laptop screens, an average of 61 students were off topic
during lecture and an average of 50 students were off topic during
the active learning exercises. The teaching staff was asked for
help 12 times during the class period.

4.2.3 Observation 3: Array-Based List 2 In-Class
Lab
Section 001 completed the array-based list 2 in-class lab. Two
observers attended the class and each recorded notes on one-half
of the class. During the initial five-minute lecture portion of the
class, there were 10 instances of disengaged behavior. There were
43 instances of disengaged behavior during the in-class lab.
Students or student teams asked for help over 50 times.

4.2.4 Observation 4: Array-Based List 2 Active
Learning Lecture
Section 002 received a standard active learning lecture on the
second half of the materials on array-based lists. The observer
focused on an estimate of the number of off topic students by
observing screens visible from his spot and creating a class wide
estimate of the number of students off topic during five-minute
windows. In a class with attendance of 72 students, 65 total
screens, and 30 screens used for the estimate, an average of 46
students were disengaged during the lecture portion of the class.
An average of 16 students were disengaged during the think-pair-
share exercises. Question counts were not recorded.

4.2.5 Observation 5: Linked List 1 Active Learning
Lecture
Section 001 received a standard active learning lecture on the first
half of materials on linked lists. No observer attended.

4.2.6 Observation 6: Linked List 1 In-Class Lab
Section 002 completed the linked list 1 in-class lab. The observer
recorded 5 instances of disengaged behavior during the short
introductory lecture and 10 instances of disengaged behavior
during the activity and reflection portion of the class. The
observer grouped together the likely 25 or more students who
were observed as disengaged during the reflection portion of the
class as a single incident. There were 33 instances where the
teaching staff was called for help.

4.2.7 Observation 7: Linked List 2 Active Learning
Lecture
Section 001 received a standard active learning lecture on the
second half of materials on linked lists. The observer noted that
he could only see half of the class during this observation.
Reported numbers are doubled with the assumption that the
observed half is indicative of the whole. There were and
estimated 52 instances of disengaged behavior during the lecture
portion of the course by an estimated 20 unique students. During
the exercises, there were an estimated 54 instances of disengaged
behavior by an estimated 18 unique students. Only two students
asked for help during the class period.

4.2.8 Observation 8: Linked List 2 In-Class Lab
Section 002 completed the linked list 2 in-class lab. The observer
counted 57 students with 50 laptops, 26 of which were visible

Table 6: Observation Summary

Obs. Class
Type

Off Topic
Lecture

Off Topic
Exercise

Questions of
Teaching

Staff
1 Lab 5 7 32
2 Lec. 62 49 12
3 Lab 10 43 50
4 Lec. 46 16 ----
5 Lec. ---- ---- ----
6 Lab 5 10 33
7 Lec. 52 54 2
8 Lab 16 5 -----
Lab Average 9 16.3 38.3
Lec. Average 53.3 39.7 7
Lec. / Lab 5.9 2.4 0.2

during the observation. The number of disengaged students was
estimated from the visible laptops. An average of 16 students
were off topic during the lecture portion of the course and an
average of 5 students were disengaged during the in-class lab
portion of the course. Question counts were not recorded.

4.2.9 Observation Summary
For active learning lectures, students were over five times more
likely to display off topic behavior during lecture portions of the
class and over two times more likely to display off topic behavior
during the exercise portion. During in-class labs, students were
over five times more likely to engage with the teaching staff by
asking questions.

These results confirm the instructor’s reflection on each of the
class periods: students engaged with their peers, engaged with the
lab activity, and asked more questions of the teaching staff than
then in the active learning lectures. However, the observers just
counted the number of questions and interactions. The missing
piece of the observation is the content of the questions.

Many of the questions, especially for the early in-class labs like
the un-observed Java Collections Framework lab, involved
technology. The first Java Collections Framework in-class lab
had a problem with the provided library. The provided library
was compiled and jar’ed using Java 1.8, and many students only
had Java 1.7 installed. Due to the volume of questions, the
instructor was unable to resolve the issue until the very end of
class. The other section had fewer library issues, but had many
tool and technology questions. Another common question during
the first few in-class lab activities was how to handle a fast-
forward error from GitHub. These questions led to the creation of
a “Troubleshooting” section at the end of each lab so that the
instructor could quickly refer students to the section and move on
to answer other questions.

The benefit of the in-class lab experience was that students were
able to resolve or consider alternative solutions to problems
quickly, especially problems associated with tooling, through the
help of their peers and the teaching staff. However, since many of
the student questions focused on tooling, students may not have
engaged deeply with the covered course topics due to the
difficulties with the tools. As the labs progressed, students asked
more questions about the lab topics, but no counts of specific
question types were recorded during the observed classes. While
students were more engaged, as measured by off-topic behavior
and teaching staff interactions during in-class labs, the
engagement was not solely on the course topics.

5. THREATS TO VALIDITY
Due to the nature of classroom research, there are several threats
to validity that constrain the generalizability and application of
our results [4, 8].

5.1 External Validity
External validity describes the generalizability of our results for
the study population [8]. Our study was restricted to two sections
of the same course taught by the same instructor in the same
semester and even at the same time of day. While these study
constraints allowed for an additional level of control and an
increase of internal validity, the constraints do limit the
generalizability of this work to other CS1.5 classes, courses, and
institutions. Due to the nature of cohorts, there may be
differences between results in fall and spring offerings of the same
course. Replications of the study in future CSC216 classes, other
CS1.5 courses, and at other institutions would increase the

generalizability of the work. A replication package [20] with the
study materials is available upon request, but some materials,
including labs, initial survey, and observation protocol, that would
not affect future studies are available [10].

5.2 Internal Validity
Internal validity is maximized through the reduction of bias and
concerns the quality of our conclusions [8]. The study does have
selection bias: students selected their own sections. However, an
initial survey of students, conducted as part of the collection of
informed consent, shows that the characteristics of the sections
were roughly the same. Table 2 and Table 3 show each section
had participants with similar characteristics, which minimizes
sample bias.

There are several possible confounding factors. Students given
one intervention may have shared that material with students
taught using the control. Additionally, since only a portion of the
course incorporated in-class labs, any effect may have been too
small to measure. Additional studies with more in-class labs that
span the breadth of course topics appropriate for lab exercises
would increase internal validity of future studies.

We minimized differential attrition bias by including consenting
participants that soft dropped the course. Students that dropped or
withdrew did not complete any coursework evaluated in the study.

There is the possibility of experimenter bias because the author
created the study and taught both sections of the course. The
author tried to reduce experimenter bias by requesting that her
Ph.D. student hold all informed consents until the end of the
semester so that she would not know who consented to participate
in the study. Due to the nature of the classes in the treatment and
control, there were differences in how the author presented the
materials to each section, but she tried to remove her preferences
for lecture success from discussions with the students. Future
studies will include other faculty to reduce experimenter bias.

5.3 Construct Validity
Construct validity describes how well the underlying concept of
interest, in our case student learning and engagement, are
empirically investigated [8]. Exam questions measured student
learning. For the first two exams, each section had similar, but
different questions. On exam 1, Section 001 wrote the
indexOf() method and Section 002 wrote the
lastIndeOf() method for an array-based list. The questions
were similar, but iterating through a list in reverse may be
conceptually harder. That means the exam questions on Exams 1
and 2 may not equally assess student learning of the topic.
Students took a common final, so those questions provide a
common comparison point.

Another concern is the exam questions and the grading rubrics
themselves. The exam questions and the rubric may not fully
evaluate student learning. The department’s assessment
coordinator has assessed the final exam, and there is no current
concern that the exam is not measuring student learning.

The initial survey asked students about their prior experience with
tooling and about their self-efficacy when programming and
testing [4]. There were additional questions about enjoyment [4],
ways of learning, goals, and demographics. The addition of
course and time information on the tooling question may provide
additional confusion to students about if the relationship is an
“and” or an “or” relationship. However, the results of that
question were what we expected from courses typically made up
of traditional aged college freshman and sophomores. The

questions on efficacy and enjoyment were pulled from literature
[4], but are not to our knowledge validated instruments. Future
studies may consider a preliminarily validated instrument by Scott
and Ghinea [19]. All other questions were generated by the
author and may be flawed instruments. Further validation of the
survey instrument is needed to determine if the questions measure
what they are supposed to measure, but those questions do not
influence the results of this study.

The intention of the observation protocol was to measure how
many times and how many students were off task. Additionally,
the protocol measured the number of times the teaching staff
engaged with students about course material. However,
inconsistent use by observers is a construct threat. Many, but not
all, observers measured the counts at five-minute intervals.
Future iterations of the protocol will create a timeline for counts
and will include summary information like the number of students
in attendance. That instrument will allow for better summary
results from multiple observations and multiple observers.

6. DISCUSSION
The goal of our research is to increase student learning and
engagement through in-class laboratories on linear data structures.

Research question 1 asked do in-class laboratories on linear data
structures increase student learning on linear data structure exam
questions when compared to active learning lectures? Our results
show that in-class laboratories on linear data structures did not
lead to an increase in student learning over active learning
lectures. Student learning when using in-class labs and active
learning lectures is the same as measured by the linear data
structure questions on the final exam. Ultimately, the result is not
unexpected since both think-pair-share exercises as used in the
active learning lectures and in-class labs are both active learning
techniques that both lead to increased learning. Overall, the
results suggest that using in-class laboratories does no harm to
student learning. Future work may formalize the team portion of
the in-class labs to use lightweight teams [16], which may
increase student learning. Additional studies will strengthen our
knowledge.

Research question 2 asked do in-class laboratories on linear data
structures increase student engagement when compared with
active learning lectures? The observations show that most
students engaged with the material during in-class lab sections
while a large portion of students were off topic during active
learning lectures. Additionally, over five times as many students
or student teams asked questions during in-class labs than during
active learning lectures. Due to inconsistent and estimated
measures during the observations, we cannot attempt any
statistical analyses on the data. The raw numbers are highly
suggestive that in-class labs were more engaging. However,
many of the student questions involved tooling used for the in-
class labs rather than questions on in-class lab topics. While
students were more engaged during in-class labs, the engagement
was not solely on the lab topics, which may contribute to the null-
results on student learning. Future studies with better observation
protocols, including categorization of student interactions by
teaching staff, can further answer our research question.

Prior research on active learning has shown an increase in
completion rates [9], where the completion rate is the percentage
of students who pass the course. Grade distributions for courses at
NC State are protected data, so we cannot compare or comment
on how completion rates for the Fall 2014 offerings of CSC216
compare to prior offerings or other core undergraduate computer

science courses at NC State. While we cannot compare publically
against our own historical data, we can compare with reported
completion rates and use these measures as a baseline in future
studies that build on this work. Bennedsen and Caspersen [3]
report a 67% pass rate for CS1 courses in 2007 and Watson and Li
[22] report a similar completion rate of 67.7% for CS1 courses in
2014. We expect that a CS1.5 course would have a similar
completion rate due to an overlap with traditional CS1 topics.
Freeman et al., [9] found a completion rate of 78.2% with active
learning compared to 66.2% completion rate for traditional lecture
courses. Seventy-two percent of students completed CSC216 in
Fall 2014 with a C or higher. CSC216’s completion rate of 72%
is lower than the completion rate for active learning classes
reported by Freeman et al. [9], but not as low as the completion
rate for traditional lecture courses. The completion rate for
CSC216 is higher than the completion rates from CS1 literature
[3, 22]. Additional reportable data about prior semesters and
comparison with future semesters will identify if we are making
progress toward increasing the rate of student completion in
CSC216.

7. CONCLUSIONS AND FUTURE WORK
Overall, the use of in-class labs was successful in maintaining
student learning and increasing student engagement. There were
several lessons learned from incorporating in-class labs into
CSC216. Students were expected to watch videos about the
lecture material before attending class to complete the in-class lab.
Based on questions received and the number of students watching
the videos at the start of the class, most students did not prepare
adequately for class. One solution is to have students take a quiz
on the material for a grade [5]. Another solution is to restructure
the array-based list and linked list lectures so that the first class
period on the topic will be a lecture and the second class period
will be devoted to the in-class lab activity for implementing a
generic version of the data structure.

We may not have seen gains in student learning since only six
lectures of a 28-lecture course were changed to in-class labs.
Additional in-class labs will be developed for advanced OO,
stacks and queues, FSMs, recursion, and GUIs. Future work will
also consider the identification and transfer of the in-class lab
software engineering best practices to out-of-class assignments
and future coursework.

The introduction of in-class labs addressed a student request in
evaluations for more time programming during class, but we
would still like to increase student learning with a long term goal
for increasing the completion rate. A departmental task force of
CSC216 instructors and other undergraduate leadership is
working on increasing student support and moving the course to a
lab-based delivery mechanism. In-class labs developed or refined
for the next academic year will be assessed as a baseline for
comparison to the move to a lab-based course in AY16-17.

8. ACKNOWLEDGMENTS
Thanks to Brittany Johnson for survey collection and storage,
Jordan Connor for help with data entry and review, and students
and colleagues in CSC801-006 for their observations. Thanks to
the students who participated in the study. Funding for the study
is provided by a NCSU Office of Faculty Development grant and
by a Google CS Engagement Award (TFR15-00445).

9. REFERENCES
[1] A. Amresh, A. R. Carberry, J. Femianai, “Evaluating the

Effectiveness of Flipped Classrooms for Teaching CS1,”

Frontiers in Education Conference, Oklahoma City, OK,
USA, 23-26 Oct. 2013, p. 733-735.

[2] A. Bandura, “Self-efficacy: Toward a Unifying Theory of
Behavioral Change,” Psychological Review, vol. 82, no. 4,
pp. 191-215, 1977.

[3] J. Bennedsen and M. E. Caspersen, “Failure Rates in
Introductory Programming,” SIGCSE Bulletin, vol. 39, no. 2,
pp. 32-36, 2007.

[4] C. Bishop-Clark and B. Dietz-Uhler, Engaging in the
Scholarship of Teaching and Learning, Stylus Publishing,
Sterling, VA, 2012.

[5] J. Campbell, D. Horton, M. Craig, P. Gries, “Evaluating an
Inverted CS1,” Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, Atlanta, GA,
USA, March 3-8, 2014, p. 307-312.

[6] S. H. Edwards, “Improving Student Performance by
Evaluating How Well Students Test their Own Programs,”
Journal on Educational Resources in Computing, vol. 3, no.
1, September 2003.

[7] R. M. Felder and R. Brent, “Active Learning: An
Introduction,” ASQ Higher Education Brief, vol. 2, no. 4,
August 2009.

[8] S. Fincher and M. Petre, eds., Computer Science Education
Research, Taylor & Francis, The Netherlands, Lisse, 2004.

[9] S. Freeman et al., “Active Learning Increases Student
Performance in Science, Engineering, and Mathematics,”
Proceedings of the National Academy of Sciences in the
United States of America, vol. 111, no. 23, p. 8410-8415,
June 10, 2014.

[10] S. Heckman, “CSC216 In-class Lab Study Replication
Package,” [Online]. Available:
http://people.engr.ncsu.edu/sesmith5/216-
labs/csc216_labs.html

[11] S. Heckman, J. Perry, J. King, E. Gehringer, A. Meneely
(2014, August 11) CS1.5 Tutorials [Online]. Available:
http://courses.ncsu.edu/CS1.5/common/tutorials/.

[12] D. Horton, M. Craig, J. Campbell, P. Gries, D. Zingaro,
“Comparing Outcomes in Inverted and Traditional CS1,”
Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education, Uppsala,
Sweden, June 23-25, 2014, pp. 261-266.

[13] A. King, “From Sage on the Stage to Guide on the Side,”
College Teaching, vol. 41, no. 1, Winter 1993, p. 30-35.

[14] A. Kothiyal, R. Majumdar, S. Murthy, S. Iyer, “Effect of
Think-Pair-Share in a Large CS1 Class: 83% Sustained
Engagement,” Proceedings of the 9th Annual Conference on
International Computing Education Research, San Diego,
CA, USA, August 12-14, 2013, pp. 137-144.

[15] M. J. Lage, G. J. Platt, M. Treglia, “Inverting the Classroom:
A Gateway to Creating an Inclusive Learning Environment,”
The Journal of Economic Education, vol. 31, no. 1, p. 30-43,
January 2000.

[16] C. Latulipe, N. B. Long, C. E. Seminario, “Structuring
Flipped Classes with Lightweight Teams and Gamification,”
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, Kansas City, MO, USA,
March 4-7, 2015, pp. 392-397.

[17] L. Malmi et al., “Theoretical Underpinning of Computing
Education Research – What is the Evidence?,” Proceedings
of the 10th Annual Conference on International Computing
Education Research, Glasgow, United Kingdom, August 11-
14, 2014, pp. 27-34.

[18] R Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, http://www.R-project.org/,
2013.

[19] M. J. Scott, G. Ghinea, “Measuring Enrichment: The
Assembly and Validation of an Instrument to Assess Student
Self-Beliefs in CS1,” Proceedings of the 10th Annual
Conference on International Computing Education Research,
Glasgow, United Kingdom, August 11-14, 2014, pp. 123-
130.

[20] F. Shull, V. Basili, J. Carver, J. C. Maldonado, G. H.
Travassos, M. Mendonça, and S. Fabbri, “Replicating
Software Engineering Experiments: Addressing the Tacit
Knowledge Problem,” Proceedings of the 2002 International
Symposium on Empirical Software Engineering, Nara,
Japan, October 3-4, 2002, pp. 7-16.

[21] A. Vihavainen, J. Airaksinen, C. Watson, “A Systematic
Review of Approaches for Teaching Introductory
Programming and Their Influence on Success,” Proceedings
of the 10th Annual Conference on International Computing
Education Research, Glasgow, United Kingdom, August 11-
14, 2014, pp. 19-26.

[22] C. Watson, F. W. B. Li, “Failure Rates in Introductory
Programming Revisited,” Proceedings of the 2014
Conference on Innovation & Technology in Computer
Science Education, Uppsala, Sweden, June 23-25, 2014, pp.
39-44.

