
 Automated Adaptive Ranking and Filtering of Static Analysis Alerts 
 
 

Sarah Heckman and Laurie Williams 
North Carolina State University 

{sarah_heckman, lawilli3}@ncsu.edu 
 

Abstract 
 

Static analysis tools are useful in finding recurring 
software faults and weaknesses during the development 
process.  However, these tools often report a high 
number of false positives, dissuading software engineers 
from frequent use of the tools during development.  By 
ranking static analysis alerts by the probability the alert 
is a true positive, software engineers can be directed to 
the faults that are most likely to need attention.  The 
ranking is based on historical data from the filtering of 
alerts previously found to be false positives by a 
software engineer.  The Automated Warning Application 
for Reliability Engineering (AWARE) v 0.2 has been 
created to support static analysis alert ranking and 
filtering. Initial results from a feasibility study show that  
with AWARE, true positive alerts appear at the top of the 
ranking and the distance between true positive alerts are 
better than a random ordering of alerts.  By filtering a 
small number of false positives, AWARE can provide 
true positive alerts to the software engineer.  
 

1. Introduction 
 

Software engineers tend to repeatedly make the same 
mistakes [3] leading to software faults1.  Static analysis, 
the process of evaluating a system or component based 
on its form, structure, content, or documentation [4] 
without execution of the source code, is useful for 
detecting these recurring faults.    Automated static 
analysis tools provide invaluable information about the 
correctness and security of code; however, these tools 
report a high number of false positives (FP) [1, 3, 6].  

The objective of our research is to improve the 
correctness and security of a system by continuously, 
automatically, and efficiently providing adaptively-
ranked and filtered static analysis alerts. For purposes of 
this research an alert is defined as a notification to a 
software engineer, of a potential fault in the source code 

                                                           
1 We use the term fault to specify a manifestation of a mistake, or 
programmer error.  Potentially, a fault may never surface as a failure 
during operational use of a product. 

that has been identified via static analysis. An Eclipse2 
plug-in has been created to display and rank alerts 
generated from static analysis.  This tool is called the 
Automated Warning Application for Reliability 
Engineering3 (AWARE). 

To mitigate the high number of reported FPs alerts are 
ranked in AWARE by the probability that an alert is a 
true fault, or true positive (TP), in a system.  Alerts found 
to be FPs can then be filtered by the software engineer.  
After an alert is filtered, the ranking of all remaining 
alerts is adapted based on this feedback.  Alerts found to 
be TPs are corrected by the software engineer.  
Subsequent runs of a static analysis tool will no longer 
report the alert, and the alert will be closed as a TP.  
Alerts generated in future runs of a static analysis tool 
will be ranked based on filtered and closed alerts.  The 
initial ranking of AWARE is compared with a random 
baseline in a feasibility study. 
 

2. Alert Ranking and Filtering 
 

Alert ranking is the practice of ordering static analysis 
alerts such that alerts more likely to be true faults are 
listed first [5].  An adaptive ranking scheme means that if 
an alert is found to be a TP or FP, that information is 
used to modify the rankings of other alerts in the system 
[5]. Software engineer feedback, in the form of 1) 
filtering alerts found to be FPs [7]; and 2) from fixing 
(closing) alerts, is used to adjust the ranking of non-
filtered, non-closed alerts and alerts detected in future 
runs of the system.  AWARE v 0.2 uses data from 
filtered alerts to calculate the probability that an alert is a 
TP, but future versions will also include fixed alerts in 
the calculation. 

Below are the factors used in the current ranking 
algorithm in AWARE v. 0.2.  Factors will be added, 
removed, and revised as research progresses. 
• Type accuracy (TA): the probability that a particular 

type of alert (e.g. a cast error exception), generated by 
a static analysis tool is a TP.   

                                                           
2 Eclipse is an open source development environment.  Functionality of 
Eclipse is extended via plug-ins. 
3 AWARE can be found at http://agile.csc.ncsu.edu/aware 

ISSRE 2006 Supplementary Conference Proceedings
© Copyright 2006 Chillarege Press 1



• Code locality (CL): the probability that an alert is a 
TP given that other alerts in the same population are 
also TPs. A population is a particular area of code, like 
a function, class, or package [5].    

• Generated test failure (GTF): the probability an alert 
is a TP if any of the associated automatically-generated 
test cases fail.   
We expect that the contribution of each factor will 

vary by project and/or programmer.  Therefore, a 
regression equation will be used with the probability that 
an alert is a TP as the dependent variable.  The 
importance of each factor to the regression equation will 
be calibrated, similar to [2].  Additionally, the ranking 
metric will be revised to examine risk exposure for each 
alert.  Risk exposure is defined as probability that an 
alert is a TP * severity of the alert. 
 

3. Feasibility Study 
 

AWARE automatically and continuously provides the 
software engineer with a listing of static analysis alerts 
ranked by the probability that an alert is a TP in the 
system.  Currently, alerts are reported from the static 
analysis tool Check ‘n’ Crash [1] (CnC).  CnC combines 
static analysis with automatic concrete test case 
generation to reduce the number of FPs.   

AWARE was run on the RealEstate4 example, 
generating 28 alerts.  RealEstate is a Java program that 
consists of 775 lines of code and was written by the first 
author and another graduate student. Of the 28 alerts, 
only 27 were analyzed because two alerts of the same 
type were on the same line.  These alerts are considered 
the same by AWARE v0.2, and were combined for the 
experiment. Two of the 27 alerts were found to be TPs.  

This experiment investigated two questions: 1) Does 
AWARE’s initial ranking strategy rank TP alerts higher 
in the listing than a random ordering of alerts would rank 
TP alerts? and 2) What percentage of FPs must be 
filtered before all of the TPs reach the top of the 
ranking?  The first question was investigated via the 
following metrics: the number of initial FPs before the 
first TP (M1), and the average number of FPs between 
TPs (M2).  Fifty random permutations where obtained 
and the average was taken across the fifty samples for 
each metric.  For M1, AWARE returned a TP at the top 
of the list. There was an average of 8.9 FP alerts before 
the first TP alert in the random samples.  For M2, 
AWARE had an average of four FPs between TPs.  For 
random, there was an average of 8.1 FPs between TPs. 

The second question was answered using a single 
metric: the number of alerts that were filtered before all 
TP alerts reached the top of the ranking at least once.  In 
the feasibility study there were three different sets of 
initial TA values for each CnC alert type. For one set of 

                                                           
4 http://open.ncsu.edu/se/realestate 

the initial TA values, six alerts (over a quarter of 
reported alerts) were required to be filtered before all 
TPs reached the top of the ranking.  In the other two 
cases three alerts (11% of the reported alerts) required 
filtering.  While the results are not statistically 
significant, they are encouraging that AWARE’s static 
analysis ranking scheme is viable for presenting software 
engineers with alerts more likely to be TPs. 
 

4. Conclusions 
 

This research investigates ranking alerts reported by 
static analysis tools according to the probability that an 
alert is a true fault in a system.  The ranking system is 
adaptive by incorporating programmer feedback in the 
form of filtering alerts found to be FPs.  The goal of the 
proposed alert ranking scheme is to reduce the overall 
time for a fault fix and improve code quality by 
providing software engineers feedback about the 
correctness and security of their code early and often.   
 

Acknowledgements 
This work is supported by the NCSU Center for 

Advanced Computing and Communication and an IBM 
PhD Fellowship. 

 

References 
[1] C. Csallner and Y. Smaragdakis, "Check 'n' Crash: 

Combining Static Checking and Testing," 27th 
International Conference in Software Engineering, St. 
Louis, MO, USA, 2005, pp. 422-431. 

[2] M. Davidsson, J. Zheng, N. Nagappan, L. Williams, and 
M. Vouk, "GERT: An Emperical Reliability Estimation 
and Testing Feedback Tool," 15th IEEE International 
Symposium on Software Reliability Engineering, St. Malo, 
France, 2004, pp. 269-280. 

[3] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy," 
Conference on Object Oriented Programming Systems 
Languages and Applications (OOSPLA) Companion, 
Vancouver, BC, 2004, pp. 132-135. 

[4] IEEE, "IEEE Standard Glossary of Software Engineering 
Terminology," IEEE Standard 610.12-1990. 

[5] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler, 
"Correlation Exploitation in Error Ranking," International 
Symposium on Foundations of Software Engineering, 
Newport Beach, CA, 2004, pp. 83-93. 

[6] N. Rutar, C. B. Almazan, and J. S. Foster, "A Comparison 
of Bug Finding Tools for Java," 15th IEEE International 
Symposium on Software Reliability Engineering, St.Malo, 
Bretagne, France, 2004, pp. 245-256. 

[7] S. E. Smith, L. Williams, and J. Xu, "Expediting 
Programmer AWAREness of Anomalous Code," 16th 
IEEE International Symposium on Software Reliability 
Engineering, Fast Abstract, Chicago, IL, 2005 

 
 

ISSRE 2006 Supplementary Conference Proceedings
© Copyright 2006 Chillarege Press 2


