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ABSTRACT 
Benchmarks provide an experimental basis for evaluating software 
engineering processes or techniques in an objective and repeatable 
manner. We present the FAULTBENCH v0.1 benchmark, as a 
contribution to current benchmark materials, for evaluation and 
comparison of techniques that prioritize and classify alerts 
generated by static analysis tools.  Static analysis tools may generate 
an overwhelming number of alerts, the majority of which are likely 
to be false positives (FP). Two FP mitigation techniques, alert 
prioritization and classification, provide an ordering or classification 
of alerts, identifying those likely to be anomalies.  We evaluate 
FAULTBENCH using three versions of a FP mitigation technique 
within the AWARE adaptive prioritization model. Individual 
FAULTBENCH subjects vary in their optimal FP mitigation 
techniques. Together, FAULTBENCH subjects provide a precise and 
general evaluation of FP mitigation techniques.   

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
Reliability, D.2.5 [Software Engineering]: Testing and Debugging 
– Testing tools  

General Terms 
Measurement, Reliability, Experimentation, Verification. 

Keywords 
Automated static analysis, alert prioritization, alert classification, 
benchmark creation, false positive mitigation 

1. INTRODUCTION 
Several open questions in software engineering involve evaluating 
processes and techniques that potentially improve aspects of the 
software development lifecycle. Empirical analysis of research 
theories are a component for acceptance of the theory within a 
research community [19]. Benchmarks provide an experimental 
basis for evaluating software engineering theories, represented by 
software engineering techniques, in an objective and repeatable 
manner [19]. A benchmark is defined as “a procedure, problem, or 
test that can be used to compare systems or components to each 
other or to a standard” [8]. Benchmarks represent the research 

problems of interest and solutions of importance in a research area 
through definition of the motivating comparison, task sample, and 
evaluation measures [18].  The task sample can contain programs, 
tests, and other artifacts dependent on the benchmark’s motivating 
comparison. A benchmark controls the task sample reducing result 
variability, increasing repeatability, and providing a basis for 
comparison [18].  Additionally, successful benchmarks promote 
collaboration within a research community [18]. 

Several benchmarks in the realm of software anomaly1 detection 
have emerged in recent years [15-17] containing subject programs 
of various sizes, in multiple languages, and with real or seeded 
faults. Current benchmarks provide meaningful points of 
comparison; however, they lack a detailed, repeatable process. Our 
goal is to supplement prior benchmarks by gathering a set of small, 
real, and anomalous Java programs from a variety of domains and 
providing a process for evaluation of the following software 
anomaly detection problem: how to identify which alerts generated 
by static analysis tools are program anomalies.   

Static analysis tools can identify anomalies in source code early in 
the development process [8].  These tools produce reports listing 
possible program anomalies, which we call alerts.  Inspection of 
each alert by a developer is required to determine if the alert is an 
indication of an important anomaly or a true positive (TP).  When 
an alert is not an indication of an anomaly or is deemed unimportant 
to the developer (e.g. the alert indicates a programmer mistake 
inconsequential to program functionality), we call the alert a false 
positive (FP) [1].  Static analysis tools may generate an 
overwhelming number of alerts [11], the majority of which are 
likely to be FPs [6].  Alert prioritization techniques, used after static 
analysis is complete, can increase the usability of static analysis 
tools by presenting developers with TP alerts first.  Additionally, 
alert classification techniques, used after static analysis is complete, 
can divide static analysis alerts into two groups: alerts likely to be 
TPs and alerts likely to be FPs.  Prioritization and classification of 
static analysis alerts are both potential FP mitigation techniques. 

The goal of our research is to propose the FAULTBENCH benchmark 
to the software anomaly detection community for comparison and 
evaluation of FP mitigation techniques. The literature in the realm 
of static analysis FP mitigation is moving towards a definition for 
conducting and evaluating research [10, 11, 13, 15, 21, 24]. 
FAULTBENCH provides a basis for comparison of static analysis FP 
mitigation techniques and contributes subject programs; an analysis 

                                                                 
1 IEEE defines an anomaly “as a condition that deviates from expectations 
based on requirements specifications, design documents, user documents, 
or standards, or from someone’s perceptions or experiences” [9]. The term 
anomaly encompasses software faults and other developer mistakes. 
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procedure; and evaluation metrics.  The current version of 
FAULTBENCH, v0.1, contains six, open-source subject programs 
written in Java.  We validate the selection of FAULTBENCH subject 
programs by comparing three versions of the AWARE [5] adaptive 
prioritization model (APM) FP mitigation techniques on static 
analysis alerts generated by the FINDBUGS [6] static analysis tool.  
FINDBUGS is a popular open source static analysis tool, which can 
identify faults like null pointers, open streams, etc. We describe 
how we created FAULTBENCH, and present the process of evaluating 
and comparing FP mitigation techniques. We invite researchers in 
the static analysis community to critique and improve the current 
benchmark.   

The rest of the paper is structured as follows: Section 2 presents 
related work, Section 3 describes the FAULTBENCH creation and 
analysis procedure, Section 4 describes the FAULTBENCH case study, 
Section 5 presents the case study results, and Section 6 concludes 
and presents future work. 

2. RELATED WORK 
This section describes the related work in the areas of benchmark 
creation and the current static analysis FP mitigation techniques. 

2.1 Current Anomaly Detection Benchmarks 
There are several benchmarks in the realm of software anomaly 
detection.  The SIEMENS [7] benchmark was created by researchers 
at Siemens Corporate Research and contains multiple versions of 
small C programs each containing a single anomaly and a suite of 
test cases.  The benchmarks were created to evaluate control- and 
data-flow test adequacy criteria and were later used by Rothermel et 
al. [17] to evaluate regression test case prioritization.  

BUGBENCH [15] is a benchmark containing seventeen buggy, open 
source, C/C++ applications ranging from seven thousand lines of 
code (KLOC) to 1028 KLOC in various domains.  A Java 
benchmark for evaluation of the CHORD race condition detection 
static analysis tool [16] contains twelve concurrent programs 
ranging from 2.5 KLOC to 650 KLOC.  PROMISE [3] is a repository 
for data sets from empirical research in predictive modeling, and 
half of the 60 data sets are for anomaly prediction.  However, most 
of the PROMISE data sets provide metrics without the project source, 
and some data sets refer to large, open source projects while the 
remainders refer to commercial products.  Other static analysis 
researchers [10, 11, 13, 21] have used large open source projects 
(e.g. Apache’s httpd2, Wine3, Sun’s JDK 1.6.04, Columba5) or 
commercial programs to evaluate FP mitigation techniques.  While 
large open-source programs provide confidence and scale, the size 
of the sample evaluated (one to three programs) is a threat to 
external validity (e.g. the generalization of the results).  Additional 
studies and subjects increase the generalization of experimental 
results [17].  Commercial examples show scalability of the 
technique in an industrial setting at the cost of repeatability and 
comparison.  

These current benchmarks are insufficient for our needs for several 
reasons.  First, current benchmarks are lacking a detailed, repeatable 
process for use and evaluation of FP mitigation techniques.  
Additionally, the current benchmarks are mostly for the C/C++ 
programming languages.  Finally, alert prioritization research, 
                                                                 
2 http://httpd.apache.org/ 
3 http://www.winehq.org/ 
4 http://java.sun.com/javase/ 
5 http://columba.sourceforge.net/ 

especially adaptive prioritization, requires the removal of anomalies 
by a researcher unfamiliar with the program, which is costly for 
large projects with a large number of alerts. Therefore, we want to 
create a benchmark of relatively small, real, and anomalous Java 
programs from a variety of domains. 

2.2 FP Mitigation Techniques 
Kim and Ernst [10, 11] describe two static analysis alert 
prioritization techniques where the lifetime of a static analysis alert 
is measured from data mined from source code repositories.  The 
lifetime of an alert is the time (in days) between alert creation and 
alert closure. One technique prioritizes static analysis alert types by 
the average lifetime of alerts sharing the same type [10].  Kim and 
Ernst assumed that alert types with shorter lifetimes have a higher 
ranking (e.g. alerts fixed quickly are likely important).  However, 
alert types with shorter lifetimes could instead imply that those alert 
types are easiest to fix. The second technique weights alert types by 
the number of alerts closed by anomaly- and non-anomaly-fixes, 
where an anomaly-fix is a source code change where the developer 
fixes an anomaly or problem and a non-anomaly-fix is a change 
where an anomaly or problem is not fixed, like a feature addition 
[11]. The history based warning prioritization presented by Kim and 
Ernst [11] improves the alert precision by over 100% when 
compared to the alert precision of alerts prioritized by tool severity.  
However, the precision ranged from 17%-67%, which might be due 
to alert closures not having a causal relationship with the root cause 
of a anomaly-fix. Additionally, both prioritization techniques work 
best for fine-grained (e.g. many distinct alert types), homogeneous 
alert types.  A homogeneous alert type means that all alerts sharing 
that type are either TPs or FPs.  We utilize the idea of alert type 
homogeneity in our prioritization. 

Williams and Hollingsworth [21] created a static analysis tool 
which evaluates how often the return values of method calls are 
checked in source code.  A method is flagged with an alert when the 
return value for the method is inconsistently checked in calling 
methods.  Williams and Hollingsworth use the HISTORYAWARE 
prioritization technique to prioritize methods by the percentage of 
time the return values of the methods are checked in the software 
repository and the current version of the code. The results show a 
statistically significant reduction of the FP rate when using the 
HISTORYAWARE prioritization technique on two case studies 
involving httpd2 and Wine3 applications.    

Kremenek et al. [13] show that static analysis alerts in a similar alert 
locations tend to be homogeneous.  On average, 88% of methods, 
52% of files, and 13% of the directories with two or more alerts 
contained homogeneous alerts.  Kremenek et al. created a 
FEEDBACK-RANK algorithm whereby the developer’s feedback is 
used to prioritize the remaining alerts.  The static analysis tools used 
by Kremenek et al. take advantage of understanding where a static 
analysis tool checked for an alert, but did not find a potential 
anomaly [14].  We also use the developer’s feedback to drive the 
adaptive prioritization of un-inspected static analysis alerts, and 
Kremenek et al inspired our version of the code locality alert 
characteristic. 

Boogerd and Moonen [4] present the ELAN technique to prioritize 
static analysis alerts by their execution likelihood, which is “the 
probability that a given program point will be executed at least once 
in an arbitrary program run.”  The prioritization is a measure of alert 
severity relative to the program under analysis.  While the results 
showed that the prioritization technique did prioritize alerts by 
execution likelihood by comparison with unit test coverage, the 



analysis did not investigate if the prioritization identified more alerts 
of interest to the developer.   

3. BENCHMARK CREATION 
The goal of contributing the FAULTBENCH benchmark is to create a 
(1) suite of subject programs and alert oracles and (2) repeatable 
procedures for evaluation of FP mitigation techniques.  We have 
created a benchmark of Java programs from various domains, 
ranging from 1,276 – 14,120 lines of code (LOC) and static analysis 
alert oracles from alerts generated by FINDBUGS [6]. FINDBUGS uses 
code scans, control-flow, and data-flow analysis to detect common 
source code patterns that are possible anomalies [6].  FINDBUGS [6] 
detects 331 distinct alert types at three priority levels. We used the 
FINDBUGS Eclipse6 plug-in [6] to generate alerts on the subject 
programs with-in the Eclipse workbench.  We configured FINDBUGS 
to report alerts at all priority and effort levels, which maximizes 
alerts reported by FINDBUGS.   

Below, we define the process for evaluating adaptive FP mitigation 
techniques to provide motivation for the creation of FAULTBENCH. 
We then define the purpose and describe how FAULTBENCH fulfills 
properties for successful benchmarks.  In addition, we provide the 
steps for choosing benchmark subjects and initializing those 
subjects for use in FAULTBENCH.   

3.1 FAULTBENCH Process 
We present the steps for evaluating adaptive FP mitigation 
techniques with FAULTBENCH.  Non-adaptive FP mitigation 
techniques would only need to evaluate the prioritized or classified 
alerts without fixing or suppressing alerts.  For adaptive FP 
mitigation techniques, the states of the alerts are recorded after each 
inspection. An alert may be in one of three states: uninspected, TP, 
or FP.  The FAULTBENCH process is as follows: 

1. Run a static analysis tool against a clean version of the subject 
program.  (If the static analysis can run automatically, turn on 
the option.) 

2. Record the original state of the alert set. 
3. Prioritize or classify the generated alerts with a FP mitigation 

technique. 
4. Starting at the top of the prioritized list or randomly selecting 

an alert classified as important, inspect each alert,   
a. If the alert oracle indicates the alert is an anomaly, then 

fix the alert with the specified change.  If the static 
analysis tool does not run automatically, then rerun static 
analysis. 

b. If the alert oracle indicates the alert is a FP, then suppress 
the alert. 

5. After each alert inspection, record the state of the alert set.   
6. After all alert inspections, evaluate the results via the 

evaluation metrics provided in Section 3.2.3. 

3.2 Definition of FAULTBENCH  
We define FAULTBENCH in terms of the three components presented 
by Sim et al. [18]: motivating comparison, task sample, and 
evaluation measures.   

3.2.1 Motivating Comparison 
The motivating comparison advocated by Sim et al. [18] describes 
why the results of comparing two tools or techniques are important 
for furthering the research surrounding the comparison. The 

                                                                 
6 Eclipse is an open source integrated development environment.  Eclipse 
may be found at: http://eclipse.org 

motivating comparison of FAULTBENCH is to find the static analysis 
FP mitigation technique with the best rate of anomaly detection.  
Static analysis is an effective means of anomaly removal [23] and is 
cost effective with the detection of three to four potential field 
failures [20].  However, a large number of alerts, especially FP 
alerts, leads to rejection of the tool [4].  Specifically, we can use 
FAULTBENCH to answer the following research questions: 

• [Q1]: Can alert prioritization improve the rate of anomaly 
detection when compared to the tool’s output? 

• [Q2]: How does the rate of anomaly detection compare between 
alert prioritization techniques? 

• [Q3]: Can alert categorization correctly predict TP and FP 
alerts? 

3.2.2 Task Sample 
The task sample is a representative sample of tests that FP 
mitigation techniques should solve [18].  For FAULTBENCH, the task 
sample consists of (1) six real Java subject programs ranging from 
1,276 – 14,120 lines of code (LOC); (2) the set of FINDBUGS [6] 
alerts identified as TP or FP in the context of the subject programs 
(alert oracle); (3) a set of source code changes to fix each TP alert; 
and (4) the experimental control alert prioritizations: OPTIMAL, 
TOOL, and  RANDOM.  Section 3.4 describes the subject program 
selection process for FAULTBENCH.  The descriptions for creating the 
remaining task sample data is in Section 3.5, FAULTBENCH 
Initialization. 

3.2.3 Evaluation Measures 
FAULTBENCH evaluates static analysis FP mitigation techniques. 
Alert prioritization techniques order alerts such that alerts likely to 
be indications of important anomalies are at the top of an alert list.  
Alert classification techniques divide static analysis alerts into two 
groups: alerts likely to be TPs and alerts likely to be FPs.  Alert 
prioritization classifies alerts when alerts are ranked on a divisible 
numerical scale. 

Alert prioritization evaluation uses the Spearman rank correlation, 
which evaluates alert orderings by measuring the distance between 
the rank, or location, of the same alert between two orderings.  
Users of the benchmark compare alert prioritization generated by a 
prioritization technique with an OPTIMAL ordering of alerts.  An alert 
prioritization highly correlated with OPTIMAL at a statistically 
significant level suggests that the prioritization technique correctly 
ordered alerts such that alerts likely to indicate anomalies are higher 
in an alert list. 

Alert classification techniques predict if alerts are TPs or FPs. If we 
classify an alert as a TP when the alert is a TP, then we have 
correctly classified the alert and we call that classification a true 
positive classification (TPC).  Additionally, if we classify an alert as 
a FP when the alert is not an indication of an anomaly we have 
correctly classified a negative prediction, which we call a true 
negative classification (TNC).  A false positive classification (FPC) 
is when the model predicts that an alert is a TP (a positive 
classification) when the alert is actually not an indication of an 
anomaly.  A false negative classification (FNC) is when the model 
predicts that an alert is a FP (a negative classification) when the 
alert is actually an anomaly.  We are focusing on the classification 
of alerts identified by the static analysis tool; therefore, we are not 
considering software anomalies not found by static analysis tools.  
Figure 1 is a classification table. 

 

 



Figure 1: Classification Table (adapted from Zimmerman et al. 
[24] where they used fault where we use anomaly) 
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The following metrics [11, 21, 22, 24] are used to evaluate the 
classification of static analysis alerts: 

• Precision: the proportion of correctly classified anomalies (TPC) 
out of all alerts predicted as anomalies (TPC + FPC).  The 
precision calculation is presented in Equation 1. 

CC

C

FPTP
TPprecision
+

=  (1) 

• Recall: the proportion of correctly classified anomalies (TPC) 
out of all possible anomalies (TPC + FNC).  The recall 
calculation is presented in Equation 2. 

• Accuracy: the proportion of correct classifications out of all 
classifications. The accuracy calculation is presented in Equation 
3 
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• Anomaly Detection Rate Curve: the area under the curve of 
the cumulative percentage of anomalies detected after each 
inspection.  An example is in Figure 5.  

3.3 Desiderata for Benchmarks 
Sim et al. [18] describe seven properties of successful benchmarks: 
accessibility, affordability, clarity, relevance, solvability, portability, 
and scalability.  Lu et al. [15] also provide five benchmark selection 
criteria: representative, diverse, portability, accessibility, and 
fairness. The following subsections describe how FAULTBENCH 
meets these desiderata: 

• Accessibility: A benchmark should be easy to obtain and use.  
Each of the FAULTBENCH subjects is available online through 
various open source licenses.  The subject programs, generated 
alerts, anomaly fixes, and evaluation materials related to 
FAULTBENCH are publicly available at 
http://agile.csc.ncsu.edu/faultbench. 

• Affordability: A benchmark’s cost (e.g. human, software, and 
hardware resources) should be comparable to the value of the 
results.  To complete the benchmark for a single prioritization 
technique takes 8-10 hours on a single computer.  Additional 
time is required for evaluating further techniques.   

• Clarity: A benchmark’s documentation should be clear and 
concise.  The FAULTBENCH documentation is provided at 
http://agile.csc.ncsu.edu/faultbench for evaluation and 
comparison of other FP mitigation techniques to ensure 
repeatability and disclosure. 

• Relevance/Representative: A benchmark must contain 
representative subjects and performance measures related to the 
motivating comparison. FAULTBENCH contains Java programs 
from various domains created by developers of varying levels of 
experience.  The performance measures are standard in the area 
of data mining [22], software anomaly detection [24], and static 
analysis FP mitigation [21]. 

• Solvability: Completing the task sample and obtaining correct 
metrics is not difficult.  The task samples vary in size and 
number of FINDBUGS static analysis alerts.  FINDBUGS identified 
55 alert types in the task sample from the 331 possible alert 
types. Additionally, an analysis program is provided as part of 
the benchmark materials 

• Portability: A benchmark should be useable by different FP 
mitigation techniques without bias. The task sample consists of 
stand-alone Java projects containing required libraries.  Use of 
the Java language assumes platform portability. 

• Scalability/Fairness: A benchmark should be scalable to 
varying FP mitigation techniques and not have bias towards a 
specific technique. Currently, FAULTBENCH contains Java subject 
programs and can only evaluate FP mitigation techniques on 
alerts generated by Java static analysis tools. FAULTBENCH 
supplements other benchmarks in C and C++ and the authors 
encourage expansion to the benchmark as demonstrated in 
Section 3.2. 

3.4 FAULTBENCH Subject Selection 
The goal of FAULTBENCH is to provide a benchmark to the software 
anomaly detection community for comparison and evaluation of 
static analysis FP mitigation techniques.  Therefore, the subject 
programs in the benchmark must meet the following criteria: open 
source; small (less than 15 KLOC), of various domains, written in 
Java; and compliable with Java 1.4.2 or Java 1.5. To find possible 
subject programs, we investigated the benchmarks presented in the 
related work section.  None of the subjects in those benchmarks met 
our criteria for selection.  Next, we investigated programs analyzed 
by the static analysis, style checker tool PMD7.  The PMD website 
maintains a page reporting results from running PMD on 
SourceForge8 projects.  We investigated the 15 smallest programs 
(based on the number of analyzed non-commented source LOC) for 
inclusion into our benchmark and selected 11 as possible subjects.  
The un-chosen projects did not contain source releases or no longer 
existed as projects.  Then, we searched for small components of 
commonly used libraries and applications, like Apache and Eclipse.  
One subject was identified when satisfying the library requirements 
of an earlier subject.  The final potential subject comes from a 
student project associated with the authors’ research group.  Table 1 
presents the set of possible subject programs.  

The set of subjects were further refined through an analysis of six 
characteristics: domain; number of developers; LOC; number of 
FINDBUGS alerts; maturity; and alert distribution.  First, we 
quantified each of the characteristics.  For the categorical 
characteristics (e.g. domain and maturity), we assigned a numerical 
value to each category.  The alert distribution is a value describing 
how many unique alert types FINDBUGS identified in a subject 
program. The alert distribution is the sum of the number of alerts of 
the same type in a subject divided by the number of subjects that 
contain at least one alert of the that type which is then divided by 

                                                                 
7 http://pmd.sourceforge.net/ 
8 SourceForge is a repository for open source projects: 
http://sourceforge.net 
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the number of alerts the subject contains.  The alert distribution 
measures how many FINDBUGS alert types the subject program 
contains.  We are interested in subject programs with varied alert 
types.  The calculation for alert distribution is presented in Equation 
4. 

Boehm and Turner [2] use polar charts (also called radar charts) to 
provide a visualization of agile and plan-driven risks in a software 
development project, and use their visualization to determine which 
development process fits the project characteristics best. Similarly, 
we can visualize the characteristics of our possible benchmark 
subjects’ polar charts.  Each of the characteristics becomes an axis 
on the polar chart.  Figure 2 presents the polar charts for the six 
selected FAULTBENCH subjects. In Figure 2, the scale of each axis is 
normalized. The subjects in FAULTBENCH should have different 
shapes, which are representative of a variety of subject 
characteristics. Benchmark selection is quantifiable by taking the 
area of the polar charts.  However, when taking the area of polar 

charts, the order of the six axes matter otherwise the ordering of 
subjects by area will be affected.  We ordered the axes of the polar 
charts starting clockwise from the top as shown in Figure 2.  We 
reduced the number of subjects to use in the evaluation of the ARM 
to six by taking the areas of the polar charts, ordering the subjects 
by area, and taking every other subject starting with the subject 
having the largest area.  Initially, there were seven subjects, but 
mflow had complicated alert open and closure patterns due to 
interrelated alert types requiring removal from the current version of 
FAULTBENCH.  Table 1 contains the areas of the polar charts for the 
potential benchmark subjects.  Additionally, the six subjects chosen 
for the benchmark are shaded in grey.  

3.5 FAULTBENCH Subject Initialization 
After FAULTBENCH subject selection, the remaining task sample data 
(alert oracle, source code changes, and experimental control 
prioritizations) are defined. 

3.5.1 Alert Oracle 
The first author inspected the source code associated with each 
static analysis alert and determined if the alerts generated by 

Table 1: Potential FAULTBENCH benchmark subjects 

Subject Version License Domain # Dev # LoC # 
Alerts Maturity Alert 

Dist. Area 

commons 2005.05.30 GNU LGPL 1 - software dev 2 5560 70 5 - Production 0.38 173,497.0 
commons-
logging 

1.1.1 Apache 2.0 1 - software dev 12 5426 126 5 - Production 0.34 324,513.6 

csvobjects 0.5beta GNU GPL 2 - data format 1 1577 7 5 - Production 0.64 5,477.5 
importscrubber 1.4.3 Apache Software 

License 
1 - software dev 2 1653 35 4 - Beta 0.31 26,545.7 

itrust Fall 2007 Educational 3 - web 5 14120 110 3 - Alpha 0.61 703,277.0 
javaserver 5.1 Artistic 6 -communication 1 1752 31 5 - Production 0.39 24,348.0 
jbook 1.4 GNU GPL 7 - educational 1 1276 52 5 - Production 0.28 29,400.9 
jdom 1.1 Apache-style 2 - data format 3 8422 55 5 - Production 0.19 211,638.6 
junit-addons 1.4 Apache Software 

License 
1 - software dev 1 4856 109 4 - Beta 0.45 231,488.3 

kaprekar 3.0 GNU GPL, MPL 1.1 5 - math 1 1869 33 4 - Beta 0.21 27,576.4 
mflow 0.1 GNU GPL 6 - communication 1 4172 86 3 - Alpha 0.33 157,283.6 
org.eclipse. 
core.runtime 

3.3.1.1 Eclipse Public License 1 - software dev 100 2791 98 5 - Production 0.30 239,546.9 

schemalizer 0.16 GNU LGPL 2 - data format 1 2524 29 3 - Alpha 0.17 32,826.6 
xmlwriter 2.2.2 BSD License 2 - data format 2 953 6 5 - Production 0.70 3,318.1  
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Figure 2: Polar Charts for Potential Benchmark Subjects 



FINDBUGS were indications of anomalies in the subject programs. 
The evaluated alerts provide an oracle for comparing FP mitigation 
techniques.  Table 2 presents the number of TP and FP alerts for 
each of the benchmark subjects.  

3.5.2 Source Code Changes 
Adaptive FP mitigation techniques modify the prioritization of 
uninspected alerts from developer feedback about an alert being an 
indication of an important anomaly or a FP. Modification of an 
alert’s prioritization occurs after each inspection or a set of 
inspections. An alert closure occurs when static analysis tools no 
longer identify the alert in the source code, usually due to an 
anomaly fix directly or indirectly associated with the alert 
description.  Alert closures also occur due to configuration changes 
and file deletions.  Alert suppression is an explicit action taken by 
the developer to indicate that an alert is a FP.   

The evaluation of adaptive FP mitigation techniques requires fixing 
TP alerts. However, alerts are not orthogonal; several alert types are 
interrelated and a change to one may open or close another of a 
complementary type, which may affect the priority or class of 
remaining alerts.  An alert fix should minimize the number of alert 
opens and closures.  For example, suppose a method opens and 
closes a file stream within a try block with an empty catch block, as 
shown in Figure 3.  FINDBUGS would report two alerts: 1) 
OS_OPEN_STREAM_EXCEPTION_PATH at line 3 reporting that the file 
stream is not closed when there is an exception and 2) 
DE_MIGHT_IGNORE at line 8 reporting that the exception is ignored.  
Fixing the alert at line 3, by closing the stream in the exception 
block, will also close the alert at line 8.  When evaluating the 
prioritization, we only care about closed alerts identified as TP in 
the baseline.  If an alert identified as FP was closed as part of an 
alert fix, we do not count the alert in our metrics.  

Additionally, new alerts may be opened when fixing TP alerts, as 
shown in the example code in Figure 4.  FINDBUGS reports an 
ES_COMPARING_PARAMETER_STRING_WITH_EQ at line 2, meaning 
that checking the equality of a and a constant string does not use 
the .equals() method.  If the alert at line 2 is fixed, a new alert 
of the same type is opened at line 5 for a similar problem.  When 
inspecting alerts, alerts opened as part of another fix are ignored.  
Only alerts present in the baseline were inspected and evaluated. 

1 public void load() { 
2   try { 
3     BufferedReader in = 
4       new BufferedReader(new   
5       FileReader(file)); 
6     //do something with contents 
7     in.close(); 
8   } catch (IOException e) { 
9   } 
10 }  

Figure 3: Code Example – Additional Alert Closure 

1 public void compare(String a) { 
2   if (a == “”) { 
3     //do something 
4   } 
5   if (a == “null”) { 
6     //do something else 
7   } 
8 }  

Figure 4: Code Example – Alert Opening 
3.5.3 Experimental Controls 
The OPTIMAL ordering of static analysis alerts has all TP alerts at the 
top of the alert list; therefore, there are (TP!)(FP!) optimal 
permutations.  For the current version of FAULTBENCH the OPTIMAL 
ordering is generated by a greedy analysis of the TP alerts.  Alerts 
are initially sorted hierarchically in the context of the subject 
program (e.g. by project, source folder, class, method, line number, 
alert type, and description), which provides a repeatable ordering 
for alerts.  To reduce potential bias, prioritization techniques should 
use the same hierarchical alert ordering to break ties when alerts 
share the same priority. Alerts are added to the OPTIMAL ordering by 
the number of TP alerts that are closed when making an alert 
change. When two alerts close the same number of TP alerts, first 
the number of FP alerts closed is a tiebreaker, followed by the 
hierarchical ordering of alerts.  At a minimum, the optimal curve 
will fix one TP alert at each inspection until all TP alerts are fixed. 
The TOOL ordering of alerts is created from the tool’s alert log 
information.  The RANDOM ordering of alerts is generated via a 
random number generator9.  Cases where more than one alert is 
closed must be considered when creating the OPTIMAL, RANDOM, and 
TOOL prioritization.  The prioritization of an uninspected closed alert 
is a fraction of the number of alerts closed during an inspection.  If 
there were three alerts (a, b, and c) closed at inspection 3, then the 
inspected alert (a) would have a rank of 3, the uninspected alert first 
in the ordered listing (b) would have a rank of 3.33 and other 
uninspected alert (c) would have a rank of 3.66.  For an alert 
inspected prior to a closure via a tangential change (suppose alert b 
was inspected at inspection 2), the original inspection (2) is 
maintained as the rank for that alert (b). 

3.6 Benchmark Limitations 
The subject programs in FAULTBENCH satisfy the seven desiderata 
for benchmarks described by Sim et al. [18].  The main limitation of 
FAULTBENCH is that the first author subjectively chose the 
classification of the alerts as TP or FP after evaluation of the source 
code.  Another developer may classify alerts differently.  Future 
development of FAULTBENCH by multiple researchers will minimize 
the subjectivity of the classification. Another limitation is the 
generation of the OPTIMAL ordering.  The current method of 
generating the OPTIMAL ordering is biased towards the TOOL 
ordering of alerts.  Future work will consider generation of many 
OPTIMAL orderings such that an average Spearman rank correlation 
is obtained or the creation of an OPTIMAL ordering of alerts by 
developers.   Finally, the subject programs are all written in Java.  
Therefore, results obtained on via FAULTBENCH may not be 
applicable to alert prioritization in other programming languages. 

4. BENCHMARK CASE STUDY 
We assess the suitability of FAULTBENCH by evaluating three 
variants of the AWARE-APM [5] FP mitigation technique. 

                                                                 
9 A random sequence generator may be found at http://random.org. 

Table 2: Benchmark subjects with alert counts 
Subject TP 

Alerts 
FP 

Alerts 
% TP 
Alerts 

csvobjects 3 4 42.9% 
importscrubber 11 24 31.4% 
iTrust 10 100 9.1% 
jbook 26 26 50.0% 
jdom 9 46 16.4% 
org.eclipse.core.runtime 8 90 8.2% 
Average 11 51 26.3%  



4.1 AWARE-APM 
AWARE-APM [5] adaptively prioritizes and classifies static analysis 
alerts by the likelihood an alert is an indication of an important 
anomaly.  Alerts are prioritized on the continuum, [-1,1] where: 

• A priority in [-1,0) implies the alert is likely a FP, 
• A priority in (0,1] implies the alert is likely a TP, and  
• A priority of 0 means there is not enough information to 

determine if the alert is likely a TP or FP. 
Alerts share characteristics, which may demonstrate some causality 
with the likelihood an alert is a TP. The alert type [5, 11] and alert 
location [13] are the alert characteristics used in the current version 
of AWARE-APM, and are presented in Section 4.1.3. 
4.1.1 Size Context 
The size context (SC) represents information about the size of the 
alerts sharing a characteristic relative to the total number of alerts in 
a subject. Alerts sharing a characteristic tend to be homogeneous [5, 
13], and by increasing the priority of large sets, we can quickly 
classify many alerts (similar to information gain in [13]).  The size 
context is the number of alerts sharing a characteristic divided by 
the number of alerts for the project.  The formula for calculating the 
size context is presented in Equation 5. 

alertstotal
alertsSC c

c #
#

=  (5) 

4.1.2 Developer Context 
The developer context (DC) represents information about what the 
developer has done to close and suppress alerts while using static 
analysis during development.  We take advantage of homogeneous 
alert characteristics [5, 13] to utilize the developer’s feedback about 
the alerts to predict the likelihood that other, similar alerts are 
anomalies.  The development context is the difference between 
closed and suppressed alerts divided by the number of inspected 
alerts as demonstrated in Equation 6. 

cc suppressed#closed#
suppressed#closed#

+
−

= cc
cDC  (6) 

4.1.3 Alert Characteristics 
Alert characteristics are an alert attribute that may have an 
association with important anomalies.  The following subsections 
describe how we calculate the relationship between alerts sharing 
the same characteristic like accuracy (ATA) and code locality (CL).  
The coefficients to the baseline (βBC) and developer (βDC) context 
have a value of 0.5 implying that the baseline and developer context 
contribute equally to an alert characteristic calculation. 

Alert Type Accuracy (ATA): ATA is the likelihood an alert (a) is an 
anomaly based on the type of the alert (e.g. null pointer, unclosed 
stream, etc.) [11, 12].  ATA is the weighted combination of the 
baseline and developer context of the alert’s type.  The ATA 
calculation is described in Equation 7. 

( ) ( ) ( )typeDCtypeSC DCSCaATA ∗+∗= ββ  (7) 

Code Locality (CL): CL is the likelihood an alert (a) is an anomaly 
based on the location of the alert (e.g. at the source folder, class, or 
method level).  CL is the weighted combination of the baseline and 
developer context of the alert’s location.  The contribution of each 
location is calculated by normalizing the counts of non-singleton 
source folder, methods, and classes from Table 2b of [13].  The 
coefficients for the contributions of the source folder, classes, and 

methods are 0.06, 0.25, and 0.69, respectively and are represented 
by the coefficients γsf, γc, and γm.  We are only interested in the non-
singleton groups of alerts sharing a characteristic because any action 
taken on an alert cans be used to predict if the other alerts in the 
group are likely to be anomalies [13].  Singleton alerts do not 
provide any predictive data.  The calculation for CL is described in 
Equation 8. 

( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )( )sfsfsfsfsfsfDC

sfsfsfsfsfsfSC

DCDCDC
SCSCSC

aCL
∗+∗+∗∗

+∗+∗+∗∗
=

γγγβ
γγγβ

 (8) 

4.1.4 FP Mitigation 
The overall alert prioritization calculation is the combination of alert 
characteristic calculations divided by the number of alert 
characteristics. Three versions of AWARE-APM FP mitigation 
techniques are presented in Table 3.   

Table 3: Experimental treatments for benchmark evaluation 
Treatment Description or Formula AWARE Version 
ATA ( ) ( )aATAaR =  1.7.1.1 

CL ( ) ( )aCLaR =  1.7.2.0 

ATA + CL ( ) ( ) ( )
2

aCLaATAaR +
=  

1.7.3.0 

 
4.1.5 ARM Limitations 
Similarly to [10, 11, 13], our prioritization technique works best 
when the groups of alerts sharing a characteristic of interest are fine-
grained (e.g. many alert types and locations) and homogeneous.  
Further research is required to determine how to prioritize static 
analysis alerts with non-homogeneous groupings. 

4.2 Case Study Specifics 
Static analysis alerts were prioritized and presented to the developer 
via the AWARE [5] Eclipse plug-in.  AWARE gathers static analysis 
alerts generated from FINDBUGS and prioritizes the alerts using one 
of the prioritization functions presented in Table 3.  AWARE 
maintains alert closures and suppressions used to modify the 
prioritization of the alerts.  We used Eclipse version 3.3.1.1 for all 
of the benchmark subjects except iTrust.  For iTrust, we used the 
Eclipse IDE for Java EE Developers version 3.3.1.1.  Each version 
of AWARE contains one of the three versions of the AWARE-APM FP 
mitigation techniques.  Table 3 also presents the AWARE version for 
each of the prioritization techniques. 

5. CASE STUDY RESULTS 
FAULTBENCH provides data to answer the following research 
questions:  

• [Q1]: Can alert prioritization improve the rate of anomaly 
detection when compared to the tool’s output? 

• [Q2]: How does the rate of anomaly detection compare between 
alert prioritization techniques? 

• [Q3]: Can alert categorization correctly predict TP and FP 
alerts? 

Question 1 and 2 are answered by using the area under the curve 
metric and the Spearman rank correlation, while question 3 is 
answered using the precision, recall, and accuracy metrics. 

5.1 Q1: Improving Anomaly Detection Rate 
We plot the cumulative percentage of anomalies detected against 
the number of inspections and measure the area under the curve to 
evaluate Question 1.  Figure 5 provides an example of these plots 
for the jdom subject program.  When TP alerts are fixed, the 



percentage of detected anomaly increases. There are plateaus in the 
prioritization curve when a FP alert is suppressed at an inspection.  
A large plateau means there were a number of suppressions.  A 
good prioritization will minimize the large plateaus until most or all 
of the TP alerts have been identified. 
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Figure 5: Fault Detection Rate Curves for jdom 
Table 4 presents the area under the anomaly detection rate curve 
metrics for each of the prioritization techniques and benchmark 
subjects. The first question compares alert prioritization techniques 
to the TOOL ordering of alerts.  In the absence of prioritization, 
developers only have the static analysis tool’s output for 
investigation.  If the tool’s ordering performs well, then alert 
prioritization is not needed. However, all prioritization techniques 
except on csvobjects and iTrust perform better than the tool 
ordering.  On average, all prioritization techniques have a larger 
area under the curve (53.94% - 72.57%) than the TOOL ordering 
(50.42%) of alerts. 
Table 5 presents the Spearman rank correlation values between the 
alert prioritization techniques and OPTIMAL. A positive correlation 
implies that the specified prioritization is similar to the OPTIMAL 
prioritization while a negative correlation implies that the specified 
prioritization is opposite OPTIMAL.  The closer the correlation is to 1 
or -1, the stronger the match or opposition of the specified 
prioritization. Cells containing one star (*) have correlations 
significant at the 0.05 level, while cells containing two stars (**) 
have correlations significant at the 0.01 level.   

Table 5: Spearman Rank Correlation 
 ATA CL ATA + 

CL 
TOOL 

csvobjects 0.321 -0.643 -0.393 0.607 
importscrubber 0.512** -0.026 0.238 0.203 
iTrust 0.418** 0.264** 0.261** 0.772** 
jbook 0.798** 0.389** 0.599** -0.002 
jdom 0.675** 0.288* 0.457** 0.724** 
org.eclipse. 
core.runtime 

0.395** 0.325** 0.246* 0.691** 
 
The TOOL experimental control prioritization has a moderately 
strong correlation (e.g. correlation value > 0.600) with OPTIMAL for 
four of the subject programs.  The strong correlation is likely due to 

a similar ordering of the FP alerts, and is not necessarily an 
indication of the anomaly detection capabilities of the TOOL 
ordering. For example, the TOOL ordering for jdom has a 
correlation of 0.724; however, the area under the anomaly detection 
curve for TOOL is at least 20% less than ATA, CL, and ATA+CL as 
seen in Table 4.  

5.2 Q2: Comparing Prioritizations 
Table 4 presents the area under the fault detection rate curve metrics 
for each of the prioritization techniques on FAULTBENCH subjects. 
The average area under an optimal curve is 90.0%.  The ATA 
prioritization is closer to OPTIMAL than CL prioritization.  
Additionally, the average ATA area is 30% larger than CL’s average 
area.  ATA+CL splits the difference between ATA’s and CL’s 
prioritization. 
Table 5 presents the Spearman rank correlation values between the 
alert prioritization technique and OPTIMAL.  The correlations 
between the alert prioritization techniques and OPTIMAL are similar 
to the patterns observed in the area under the curve measurement in 
Table 4.  However, the ATA correlation with OPTIMAL is typically 
stronger, indicating that ATA is the better prioritization technique.   

5.3 Q3: Categorizing Alerts 
Table 6 presents the average precision, recall, and accuracy metrics 
before each inspection when adaptively categorizing static analysis 
alerts.  We only consider the precision, recall, and accuracy metrics 
for uninspected alerts because we are trying to predict if the 
uninspected alerts are TPs or FPs.  A priority greater than 0 is a 
prediction that the alert is a TP while a priority less than 0 is a 
prediction that an alert is a FP.  We then assess the prioritization’s 
classification using the alert oracle and the priority, as shown in 
Table 7. 

If the alert falls in the TPC or TNC categories, the prioritization 
correctly classified the alert as TP or FP.  As we learn more about 
the alerts from the developers, we expect the precision, recall, and 
accuracy to increase; however, the precision and recall tended to be 
0 because after all TP alerts were identified, there was no longer a 
numerator in the precision and recall equations. The average 
accuracy is a better measure of how the classification techniques 
performed.  ATA had the best average accuracy, and correctly 
predicted if an alert is a TP or FP 76% of the time.   

Table 7: Alert Classification Assessment 
 Alert Oracle Ranking 
True Positive (TPC) TP > 0 
True Negative (TNC) FP < 0 
False Positive (FPC) FP > 0 
False Negative (FNC) TP < 0  

 

Table 4: Area under the fault detection curve for ranking techniques 

Subject Optimal Random ATA CL ATA + CL Tool 
csvobjects 78.57% 59.52% 50.00% 21.43% 30.39% 54.76% 
importscrubber 84.29% 71.82% 66.10% 40.91% 66.62% 36.23% 
iTrust 95.5% 48.91% 74.36% 68.09% 67.36% 75.09% 
jbook 78.55% 49.83% 46.26% 62.57% 74.19% 39.87% 
jdom 91.82% 71.66% 86.16% 63.54% 85.35% 46.89% 
org.eclipse.core.runtime 96.81% 68.61% 82.53% 67.09% 82.78% 49.67% 
Average 87.58% 61.73% 72.57% 53.94% 67.88% 50.42% 



5.4 Benchmark Evaluation 
FAULTBENCH contains six programs of varying sizes from several 
domains.  The programs with more than 50 static analysis alerts had 
more statistically significant results when comparing alert 
prioritizations with OPTIMAL using the Spearman rank correlation, 
than the smaller programs.  Additionally, if jbook or iTrust 
were the only subject used to evaluate alert prioritization techniques 
the ATA+CL and TOOL prioritizations were the best prioritizations, 
respectively, when with a larger sample, ATA was the best 
prioritization technique.  The same discrepancy applies when 
evaluating the classification accuracy of ATA+CL on 
org.eclipse.core.runtime. 

The results of the Spearman rank correlation suggest there is bias in 
the creation of the OPTIMAL order because the TOOL ordering has a 
moderately strong correlation (> 0.600) with OPTIMAL for four of the 
subject projects.  OPTIMAL defaults to an ordering of alerts by 
project, source folder, file, method, alert type, line number, and 
description in the case of a tie.  The above ordering is very similar 
to the TOOL ordering for FINDBUGS due to the use of the Visitor 
pattern [6].  There are several optimal orderings of alerts, and a 
semi-randomized ordering may have less bias to the FINDBUGS-TOOL 
ordering of alerts. 

5.5 Case Study Limitations 
We consider the three threats to the validity of our case study [17]: 
construct validity, internal validity, and external validity.  

5.5.1 Construct Validity 
Construct validity concerns our measurements. The measurements 
are straight forward and standard for prioritization analysis.  In 
AWARE and the small program used for automating the analysis of 
the inspection records, possible inconsistencies in our 
measurements could occur when comparing the static analysis alerts 
due to line and source code changes during anomaly fix.  We 
consider static analysis alerts to be the same if they share several 
characteristics including the line number and a hash of the source 
line.  The line number can change through addition or deletion of 
surrounding code and the source hash can change via refactoring.  If 
both of these characteristics change, we can no longer track the 
alert. When fixing alerts in the case study, we ensured that only one 
of the two characteristics was modified for other alerts in the same 
class.  An additional complication is duplicate alerts.  An alert is a 
duplicate when there are two alerts of the same type on the same 
line of code.  The alert display combines the alerts into one listing.  
Therefore, suppression of the alert listing leads to suppression of 
both alerts.  

5.5.2 Internal Validity 
Internal validity concerns the causal relationship between the 
dependent and independent variables.  We are concerned with 

understanding if the alert characteristics of ATA and CL are indicative 
of anomalies of importance to the developer.  The classification of 
alerts as TP and FP are from the subjective inspection of the alerts 
by the first author; therefore, a causal relationship between ATA and 
CL and the TP and FP classification of the alerts may be 
exaggerated. 

5.5.3 External Validity 
External validity concerns how we can generalize our results.  
Using FAULTBENCH mitigates some of the concerns about 
generalizing the FP mitigation results due to the varying domains of 
the subject programs and a larger sample size.  Additionally, each of 
the subject programs is an open source application with real 
anomalies. However, the programs are relatively small, and there 
are concerns about scale.   

6. CONCLUSIONS AND FUTURE WORK 
The literature in the realm of static analysis FP mitigation is moving 
towards a definition of how to conduct static analysis FP mitigation 
research [10, 11, 13, 15, 21, 24].  We present FAULTBENCH to 
supplement the current benchmarks in other languages (e.g. 
BUGBENCH [15]) and larger Java benchmarks in specific sub-
domains (e.g. CHORD subjects [16] for race detection). FAULTBENCH 
V0.1 is available for use and critique at 
http://agile.csc.ncsu.edu/faultbench. 

We evaluated three alert FP mitigation techniques against the six 
subjects in FAULTBENCH. Evaluation of the FP mitigation techniques 
against individual benchmark subjects produced varying results. On 
jbook the ATA+CL prioritization had a larger area under the 
anomaly detection curve; however, ATA prioritization had a higher 
rate of anomaly detection on average.  In addition, the TOOL 
ordering performed better than the alert prioritization techniques for 
csvobjects.  Individually, the benchmark subjects provide 
varying results, but together, a larger sample of subject programs 
provides a better understanding of how FP mitigation techniques 
work and increase the generalization of experimental conclusions.    

We present FAULTBENCH v0.1 to foster collaboration and 
communication within the static analysis alert prioritization 
community.  We will continue to evolve the benchmark, and 
feedback from within the community will improve the subjectivity 
of FAULTBENCH.  Additionally, we will continue to investigate static 
analysis FP mitigation techniques, by analyzing the contributions of 
the alert characteristic calculations via FAULTBENCH, and modifying 
the prioritization accordingly. 

7. ACKNOWLEDGMENTS 
This research is funded by an IBM PhD Fellowship awarded to the 
first author. We would like to thank the RealSearch reading group, 
particularly Andy Meneely, and the reviewers for their feedback. 

Table 6: Average precision, recall, and accuracy metrics of un-inspected alerts at before each inspection 

Subject Average Precision Average Recall Average Accuracy 
 ATA CL ATA +CL ATA CL ATA +CL ATA CL ATA +CL 
csvobjects 0.32 0.50 0.39 .038 .048 0.38 0.58 0.34 0.46 
import-scrubber 0.34 0.20 0.18 0.24 0.28 0.45 0.62 0.43 0.56 
iTrust 0.05 0.02 0.05 0.16 0.15 0.07 0.97 0.84 0.91 
jbook 0.22 0.27 0.23 0.65 0.48 0.61 0.68 0.62 0.66 
jdom 0.06 0.09 0.06 0.31 0.07 0.29 0.88 0.86 0.88 
org.eclipse.core.runtime 0.05 0.04 0.03 0.17 0.05 0.11 0.92 0.94 0.95 
Average 0.17 0.19 0.16 0.42 0.25 0.32 0.76 0.67 0.74  



We would like to thank Ben Smith for suggesting the benchmark 
name. 
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