
On Establishing a Benchmark for Evaluating Static
Analysis Alert Prioritization and Classification Techniques

Sarah Heckman
North Carolina State University

Department of Computer Science
Campus Box 8206

Raleigh, NC, USA 27695-8206

sarah_heckman@ncsu.edu

Laurie Williams
North Carolina State University

Department of Computer Science
Campus Box 8206

Raleigh, NC, USA 27695-8206

williams@csc.ncsu.edu

ABSTRACT
Benchmarks provide an experimental basis for evaluating software
engineering processes or techniques in an objective and repeatable
manner. We present the FAULTBENCH v0.1 benchmark, as a
contribution to current benchmark materials, for evaluation and
comparison of techniques that prioritize and classify alerts
generated by static analysis tools. Static analysis tools may generate
an overwhelming number of alerts, the majority of which are likely
to be false positives (FP). Two FP mitigation techniques, alert
prioritization and classification, provide an ordering or classification
of alerts, identifying those likely to be anomalies. We evaluate
FAULTBENCH using three versions of a FP mitigation technique
within the AWARE adaptive prioritization model. Individual
FAULTBENCH subjects vary in their optimal FP mitigation
techniques. Together, FAULTBENCH subjects provide a precise and
general evaluation of FP mitigation techniques.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
Reliability, D.2.5 [Software Engineering]: Testing and Debugging
– Testing tools

General Terms
Measurement, Reliability, Experimentation, Verification.

Keywords
Automated static analysis, alert prioritization, alert classification,
benchmark creation, false positive mitigation

1. INTRODUCTION
Several open questions in software engineering involve evaluating
processes and techniques that potentially improve aspects of the
software development lifecycle. Empirical analysis of research
theories are a component for acceptance of the theory within a
research community [19]. Benchmarks provide an experimental
basis for evaluating software engineering theories, represented by
software engineering techniques, in an objective and repeatable
manner [19]. A benchmark is defined as “a procedure, problem, or
test that can be used to compare systems or components to each
other or to a standard” [8]. Benchmarks represent the research

problems of interest and solutions of importance in a research area
through definition of the motivating comparison, task sample, and
evaluation measures [18]. The task sample can contain programs,
tests, and other artifacts dependent on the benchmark’s motivating
comparison. A benchmark controls the task sample reducing result
variability, increasing repeatability, and providing a basis for
comparison [18]. Additionally, successful benchmarks promote
collaboration within a research community [18].

Several benchmarks in the realm of software anomaly1 detection
have emerged in recent years [15-17] containing subject programs
of various sizes, in multiple languages, and with real or seeded
faults. Current benchmarks provide meaningful points of
comparison; however, they lack a detailed, repeatable process. Our
goal is to supplement prior benchmarks by gathering a set of small,
real, and anomalous Java programs from a variety of domains and
providing a process for evaluation of the following software
anomaly detection problem: how to identify which alerts generated
by static analysis tools are program anomalies.

Static analysis tools can identify anomalies in source code early in
the development process [8]. These tools produce reports listing
possible program anomalies, which we call alerts. Inspection of
each alert by a developer is required to determine if the alert is an
indication of an important anomaly or a true positive (TP). When
an alert is not an indication of an anomaly or is deemed unimportant
to the developer (e.g. the alert indicates a programmer mistake
inconsequential to program functionality), we call the alert a false
positive (FP) [1]. Static analysis tools may generate an
overwhelming number of alerts [11], the majority of which are
likely to be FPs [6]. Alert prioritization techniques, used after static
analysis is complete, can increase the usability of static analysis
tools by presenting developers with TP alerts first. Additionally,
alert classification techniques, used after static analysis is complete,
can divide static analysis alerts into two groups: alerts likely to be
TPs and alerts likely to be FPs. Prioritization and classification of
static analysis alerts are both potential FP mitigation techniques.

The goal of our research is to propose the FAULTBENCH benchmark
to the software anomaly detection community for comparison and
evaluation of FP mitigation techniques. The literature in the realm
of static analysis FP mitigation is moving towards a definition for
conducting and evaluating research [10, 11, 13, 15, 21, 24].
FAULTBENCH provides a basis for comparison of static analysis FP
mitigation techniques and contributes subject programs; an analysis

1 IEEE defines an anomaly “as a condition that deviates from expectations
based on requirements specifications, design documents, user documents,
or standards, or from someone’s perceptions or experiences” [9]. The term
anomaly encompasses software faults and other developer mistakes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEM’08, October 9–10, 2008, Kaiserslautern, Germany.
Copyright 2008 ACM 978-1-59593-971-5/08/10...$5.00.

procedure; and evaluation metrics. The current version of
FAULTBENCH, v0.1, contains six, open-source subject programs
written in Java. We validate the selection of FAULTBENCH subject
programs by comparing three versions of the AWARE [5] adaptive
prioritization model (APM) FP mitigation techniques on static
analysis alerts generated by the FINDBUGS [6] static analysis tool.
FINDBUGS is a popular open source static analysis tool, which can
identify faults like null pointers, open streams, etc. We describe
how we created FAULTBENCH, and present the process of evaluating
and comparing FP mitigation techniques. We invite researchers in
the static analysis community to critique and improve the current
benchmark.

The rest of the paper is structured as follows: Section 2 presents
related work, Section 3 describes the FAULTBENCH creation and
analysis procedure, Section 4 describes the FAULTBENCH case study,
Section 5 presents the case study results, and Section 6 concludes
and presents future work.

2. RELATED WORK
This section describes the related work in the areas of benchmark
creation and the current static analysis FP mitigation techniques.

2.1 Current Anomaly Detection Benchmarks
There are several benchmarks in the realm of software anomaly
detection. The SIEMENS [7] benchmark was created by researchers
at Siemens Corporate Research and contains multiple versions of
small C programs each containing a single anomaly and a suite of
test cases. The benchmarks were created to evaluate control- and
data-flow test adequacy criteria and were later used by Rothermel et
al. [17] to evaluate regression test case prioritization.

BUGBENCH [15] is a benchmark containing seventeen buggy, open
source, C/C++ applications ranging from seven thousand lines of
code (KLOC) to 1028 KLOC in various domains. A Java
benchmark for evaluation of the CHORD race condition detection
static analysis tool [16] contains twelve concurrent programs
ranging from 2.5 KLOC to 650 KLOC. PROMISE [3] is a repository
for data sets from empirical research in predictive modeling, and
half of the 60 data sets are for anomaly prediction. However, most
of the PROMISE data sets provide metrics without the project source,
and some data sets refer to large, open source projects while the
remainders refer to commercial products. Other static analysis
researchers [10, 11, 13, 21] have used large open source projects
(e.g. Apache’s httpd2, Wine3, Sun’s JDK 1.6.04, Columba5) or
commercial programs to evaluate FP mitigation techniques. While
large open-source programs provide confidence and scale, the size
of the sample evaluated (one to three programs) is a threat to
external validity (e.g. the generalization of the results). Additional
studies and subjects increase the generalization of experimental
results [17]. Commercial examples show scalability of the
technique in an industrial setting at the cost of repeatability and
comparison.

These current benchmarks are insufficient for our needs for several
reasons. First, current benchmarks are lacking a detailed, repeatable
process for use and evaluation of FP mitigation techniques.
Additionally, the current benchmarks are mostly for the C/C++
programming languages. Finally, alert prioritization research,

2 http://httpd.apache.org/
3 http://www.winehq.org/
4 http://java.sun.com/javase/
5 http://columba.sourceforge.net/

especially adaptive prioritization, requires the removal of anomalies
by a researcher unfamiliar with the program, which is costly for
large projects with a large number of alerts. Therefore, we want to
create a benchmark of relatively small, real, and anomalous Java
programs from a variety of domains.

2.2 FP Mitigation Techniques
Kim and Ernst [10, 11] describe two static analysis alert
prioritization techniques where the lifetime of a static analysis alert
is measured from data mined from source code repositories. The
lifetime of an alert is the time (in days) between alert creation and
alert closure. One technique prioritizes static analysis alert types by
the average lifetime of alerts sharing the same type [10]. Kim and
Ernst assumed that alert types with shorter lifetimes have a higher
ranking (e.g. alerts fixed quickly are likely important). However,
alert types with shorter lifetimes could instead imply that those alert
types are easiest to fix. The second technique weights alert types by
the number of alerts closed by anomaly- and non-anomaly-fixes,
where an anomaly-fix is a source code change where the developer
fixes an anomaly or problem and a non-anomaly-fix is a change
where an anomaly or problem is not fixed, like a feature addition
[11]. The history based warning prioritization presented by Kim and
Ernst [11] improves the alert precision by over 100% when
compared to the alert precision of alerts prioritized by tool severity.
However, the precision ranged from 17%-67%, which might be due
to alert closures not having a causal relationship with the root cause
of a anomaly-fix. Additionally, both prioritization techniques work
best for fine-grained (e.g. many distinct alert types), homogeneous
alert types. A homogeneous alert type means that all alerts sharing
that type are either TPs or FPs. We utilize the idea of alert type
homogeneity in our prioritization.

Williams and Hollingsworth [21] created a static analysis tool
which evaluates how often the return values of method calls are
checked in source code. A method is flagged with an alert when the
return value for the method is inconsistently checked in calling
methods. Williams and Hollingsworth use the HISTORYAWARE
prioritization technique to prioritize methods by the percentage of
time the return values of the methods are checked in the software
repository and the current version of the code. The results show a
statistically significant reduction of the FP rate when using the
HISTORYAWARE prioritization technique on two case studies
involving httpd2 and Wine3 applications.

Kremenek et al. [13] show that static analysis alerts in a similar alert
locations tend to be homogeneous. On average, 88% of methods,
52% of files, and 13% of the directories with two or more alerts
contained homogeneous alerts. Kremenek et al. created a
FEEDBACK-RANK algorithm whereby the developer’s feedback is
used to prioritize the remaining alerts. The static analysis tools used
by Kremenek et al. take advantage of understanding where a static
analysis tool checked for an alert, but did not find a potential
anomaly [14]. We also use the developer’s feedback to drive the
adaptive prioritization of un-inspected static analysis alerts, and
Kremenek et al inspired our version of the code locality alert
characteristic.

Boogerd and Moonen [4] present the ELAN technique to prioritize
static analysis alerts by their execution likelihood, which is “the
probability that a given program point will be executed at least once
in an arbitrary program run.” The prioritization is a measure of alert
severity relative to the program under analysis. While the results
showed that the prioritization technique did prioritize alerts by
execution likelihood by comparison with unit test coverage, the

analysis did not investigate if the prioritization identified more alerts
of interest to the developer.

3. BENCHMARK CREATION
The goal of contributing the FAULTBENCH benchmark is to create a
(1) suite of subject programs and alert oracles and (2) repeatable
procedures for evaluation of FP mitigation techniques. We have
created a benchmark of Java programs from various domains,
ranging from 1,276 – 14,120 lines of code (LOC) and static analysis
alert oracles from alerts generated by FINDBUGS [6]. FINDBUGS uses
code scans, control-flow, and data-flow analysis to detect common
source code patterns that are possible anomalies [6]. FINDBUGS [6]
detects 331 distinct alert types at three priority levels. We used the
FINDBUGS Eclipse6 plug-in [6] to generate alerts on the subject
programs with-in the Eclipse workbench. We configured FINDBUGS
to report alerts at all priority and effort levels, which maximizes
alerts reported by FINDBUGS.

Below, we define the process for evaluating adaptive FP mitigation
techniques to provide motivation for the creation of FAULTBENCH.
We then define the purpose and describe how FAULTBENCH fulfills
properties for successful benchmarks. In addition, we provide the
steps for choosing benchmark subjects and initializing those
subjects for use in FAULTBENCH.

3.1 FAULTBENCH Process
We present the steps for evaluating adaptive FP mitigation
techniques with FAULTBENCH. Non-adaptive FP mitigation
techniques would only need to evaluate the prioritized or classified
alerts without fixing or suppressing alerts. For adaptive FP
mitigation techniques, the states of the alerts are recorded after each
inspection. An alert may be in one of three states: uninspected, TP,
or FP. The FAULTBENCH process is as follows:

1. Run a static analysis tool against a clean version of the subject
program. (If the static analysis can run automatically, turn on
the option.)

2. Record the original state of the alert set.
3. Prioritize or classify the generated alerts with a FP mitigation

technique.
4. Starting at the top of the prioritized list or randomly selecting

an alert classified as important, inspect each alert,
a. If the alert oracle indicates the alert is an anomaly, then

fix the alert with the specified change. If the static
analysis tool does not run automatically, then rerun static
analysis.

b. If the alert oracle indicates the alert is a FP, then suppress
the alert.

5. After each alert inspection, record the state of the alert set.
6. After all alert inspections, evaluate the results via the

evaluation metrics provided in Section 3.2.3.

3.2 Definition of FAULTBENCH
We define FAULTBENCH in terms of the three components presented
by Sim et al. [18]: motivating comparison, task sample, and
evaluation measures.

3.2.1 Motivating Comparison
The motivating comparison advocated by Sim et al. [18] describes
why the results of comparing two tools or techniques are important
for furthering the research surrounding the comparison. The

6 Eclipse is an open source integrated development environment. Eclipse
may be found at: http://eclipse.org

motivating comparison of FAULTBENCH is to find the static analysis
FP mitigation technique with the best rate of anomaly detection.
Static analysis is an effective means of anomaly removal [23] and is
cost effective with the detection of three to four potential field
failures [20]. However, a large number of alerts, especially FP
alerts, leads to rejection of the tool [4]. Specifically, we can use
FAULTBENCH to answer the following research questions:

• [Q1]: Can alert prioritization improve the rate of anomaly
detection when compared to the tool’s output?

• [Q2]: How does the rate of anomaly detection compare between
alert prioritization techniques?

• [Q3]: Can alert categorization correctly predict TP and FP
alerts?

3.2.2 Task Sample
The task sample is a representative sample of tests that FP
mitigation techniques should solve [18]. For FAULTBENCH, the task
sample consists of (1) six real Java subject programs ranging from
1,276 – 14,120 lines of code (LOC); (2) the set of FINDBUGS [6]
alerts identified as TP or FP in the context of the subject programs
(alert oracle); (3) a set of source code changes to fix each TP alert;
and (4) the experimental control alert prioritizations: OPTIMAL,
TOOL, and RANDOM. Section 3.4 describes the subject program
selection process for FAULTBENCH. The descriptions for creating the
remaining task sample data is in Section 3.5, FAULTBENCH
Initialization.

3.2.3 Evaluation Measures
FAULTBENCH evaluates static analysis FP mitigation techniques.
Alert prioritization techniques order alerts such that alerts likely to
be indications of important anomalies are at the top of an alert list.
Alert classification techniques divide static analysis alerts into two
groups: alerts likely to be TPs and alerts likely to be FPs. Alert
prioritization classifies alerts when alerts are ranked on a divisible
numerical scale.

Alert prioritization evaluation uses the Spearman rank correlation,
which evaluates alert orderings by measuring the distance between
the rank, or location, of the same alert between two orderings.
Users of the benchmark compare alert prioritization generated by a
prioritization technique with an OPTIMAL ordering of alerts. An alert
prioritization highly correlated with OPTIMAL at a statistically
significant level suggests that the prioritization technique correctly
ordered alerts such that alerts likely to indicate anomalies are higher
in an alert list.

Alert classification techniques predict if alerts are TPs or FPs. If we
classify an alert as a TP when the alert is a TP, then we have
correctly classified the alert and we call that classification a true
positive classification (TPC). Additionally, if we classify an alert as
a FP when the alert is not an indication of an anomaly we have
correctly classified a negative prediction, which we call a true
negative classification (TNC). A false positive classification (FPC)
is when the model predicts that an alert is a TP (a positive
classification) when the alert is actually not an indication of an
anomaly. A false negative classification (FNC) is when the model
predicts that an alert is a FP (a negative classification) when the
alert is actually an anomaly. We are focusing on the classification
of alerts identified by the static analysis tool; therefore, we are not
considering software anomalies not found by static analysis tools.
Figure 1 is a classification table.

Figure 1: Classification Table (adapted from Zimmerman et al.
[24] where they used fault where we use anomaly)

 Anomalies are observed.
 True False

Positive
True

Positive
(TPC)

False
Positive
(FPC)

Precision

M
od

el

pr
ed

ic
ts

al
er

ts

Negative
False

Negative
(FNC)

True
Negative

(TNC)

Recall

Accuracy
The following metrics [11, 21, 22, 24] are used to evaluate the
classification of static analysis alerts:

• Precision: the proportion of correctly classified anomalies (TPC)
out of all alerts predicted as anomalies (TPC + FPC). The
precision calculation is presented in Equation 1.

CC

C

FPTP
TPprecision
+

= (1)

• Recall: the proportion of correctly classified anomalies (TPC)
out of all possible anomalies (TPC + FNC). The recall
calculation is presented in Equation 2.

• Accuracy: the proportion of correct classifications out of all
classifications. The accuracy calculation is presented in Equation
3

CCCC

CC

FNFPTNTP
TNTP

accuracy
+++

+
= (3)

• Anomaly Detection Rate Curve: the area under the curve of
the cumulative percentage of anomalies detected after each
inspection. An example is in Figure 5.

3.3 Desiderata for Benchmarks
Sim et al. [18] describe seven properties of successful benchmarks:
accessibility, affordability, clarity, relevance, solvability, portability,
and scalability. Lu et al. [15] also provide five benchmark selection
criteria: representative, diverse, portability, accessibility, and
fairness. The following subsections describe how FAULTBENCH
meets these desiderata:

• Accessibility: A benchmark should be easy to obtain and use.
Each of the FAULTBENCH subjects is available online through
various open source licenses. The subject programs, generated
alerts, anomaly fixes, and evaluation materials related to
FAULTBENCH are publicly available at
http://agile.csc.ncsu.edu/faultbench.

• Affordability: A benchmark’s cost (e.g. human, software, and
hardware resources) should be comparable to the value of the
results. To complete the benchmark for a single prioritization
technique takes 8-10 hours on a single computer. Additional
time is required for evaluating further techniques.

• Clarity: A benchmark’s documentation should be clear and
concise. The FAULTBENCH documentation is provided at
http://agile.csc.ncsu.edu/faultbench for evaluation and
comparison of other FP mitigation techniques to ensure
repeatability and disclosure.

• Relevance/Representative: A benchmark must contain
representative subjects and performance measures related to the
motivating comparison. FAULTBENCH contains Java programs
from various domains created by developers of varying levels of
experience. The performance measures are standard in the area
of data mining [22], software anomaly detection [24], and static
analysis FP mitigation [21].

• Solvability: Completing the task sample and obtaining correct
metrics is not difficult. The task samples vary in size and
number of FINDBUGS static analysis alerts. FINDBUGS identified
55 alert types in the task sample from the 331 possible alert
types. Additionally, an analysis program is provided as part of
the benchmark materials

• Portability: A benchmark should be useable by different FP
mitigation techniques without bias. The task sample consists of
stand-alone Java projects containing required libraries. Use of
the Java language assumes platform portability.

• Scalability/Fairness: A benchmark should be scalable to
varying FP mitigation techniques and not have bias towards a
specific technique. Currently, FAULTBENCH contains Java subject
programs and can only evaluate FP mitigation techniques on
alerts generated by Java static analysis tools. FAULTBENCH
supplements other benchmarks in C and C++ and the authors
encourage expansion to the benchmark as demonstrated in
Section 3.2.

3.4 FAULTBENCH Subject Selection
The goal of FAULTBENCH is to provide a benchmark to the software
anomaly detection community for comparison and evaluation of
static analysis FP mitigation techniques. Therefore, the subject
programs in the benchmark must meet the following criteria: open
source; small (less than 15 KLOC), of various domains, written in
Java; and compliable with Java 1.4.2 or Java 1.5. To find possible
subject programs, we investigated the benchmarks presented in the
related work section. None of the subjects in those benchmarks met
our criteria for selection. Next, we investigated programs analyzed
by the static analysis, style checker tool PMD7. The PMD website
maintains a page reporting results from running PMD on
SourceForge8 projects. We investigated the 15 smallest programs
(based on the number of analyzed non-commented source LOC) for
inclusion into our benchmark and selected 11 as possible subjects.
The un-chosen projects did not contain source releases or no longer
existed as projects. Then, we searched for small components of
commonly used libraries and applications, like Apache and Eclipse.
One subject was identified when satisfying the library requirements
of an earlier subject. The final potential subject comes from a
student project associated with the authors’ research group. Table 1
presents the set of possible subject programs.

The set of subjects were further refined through an analysis of six
characteristics: domain; number of developers; LOC; number of
FINDBUGS alerts; maturity; and alert distribution. First, we
quantified each of the characteristics. For the categorical
characteristics (e.g. domain and maturity), we assigned a numerical
value to each category. The alert distribution is a value describing
how many unique alert types FINDBUGS identified in a subject
program. The alert distribution is the sum of the number of alerts of
the same type in a subject divided by the number of subjects that
contain at least one alert of the that type which is then divided by

7 http://pmd.sourceforge.net/
8 SourceForge is a repository for open source projects:
http://sourceforge.net

CC

C

FNTP
TP

recall
+

= (2)

the number of alerts the subject contains. The alert distribution
measures how many FINDBUGS alert types the subject program
contains. We are interested in subject programs with varied alert
types. The calculation for alert distribution is presented in Equation
4.

Boehm and Turner [2] use polar charts (also called radar charts) to
provide a visualization of agile and plan-driven risks in a software
development project, and use their visualization to determine which
development process fits the project characteristics best. Similarly,
we can visualize the characteristics of our possible benchmark
subjects’ polar charts. Each of the characteristics becomes an axis
on the polar chart. Figure 2 presents the polar charts for the six
selected FAULTBENCH subjects. In Figure 2, the scale of each axis is
normalized. The subjects in FAULTBENCH should have different
shapes, which are representative of a variety of subject
characteristics. Benchmark selection is quantifiable by taking the
area of the polar charts. However, when taking the area of polar

charts, the order of the six axes matter otherwise the ordering of
subjects by area will be affected. We ordered the axes of the polar
charts starting clockwise from the top as shown in Figure 2. We
reduced the number of subjects to use in the evaluation of the ARM
to six by taking the areas of the polar charts, ordering the subjects
by area, and taking every other subject starting with the subject
having the largest area. Initially, there were seven subjects, but
mflow had complicated alert open and closure patterns due to
interrelated alert types requiring removal from the current version of
FAULTBENCH. Table 1 contains the areas of the polar charts for the
potential benchmark subjects. Additionally, the six subjects chosen
for the benchmark are shaded in grey.

3.5 FAULTBENCH Subject Initialization
After FAULTBENCH subject selection, the remaining task sample data
(alert oracle, source code changes, and experimental control
prioritizations) are defined.

3.5.1 Alert Oracle
The first author inspected the source code associated with each
static analysis alert and determined if the alerts generated by

Table 1: Potential FAULTBENCH benchmark subjects

Subject Version License Domain # Dev # LoC #
Alerts Maturity Alert

Dist. Area

commons 2005.05.30 GNU LGPL 1 - software dev 2 5560 70 5 - Production 0.38 173,497.0
commons-
logging

1.1.1 Apache 2.0 1 - software dev 12 5426 126 5 - Production 0.34 324,513.6

csvobjects 0.5beta GNU GPL 2 - data format 1 1577 7 5 - Production 0.64 5,477.5
importscrubber 1.4.3 Apache Software

License
1 - software dev 2 1653 35 4 - Beta 0.31 26,545.7

itrust Fall 2007 Educational 3 - web 5 14120 110 3 - Alpha 0.61 703,277.0
javaserver 5.1 Artistic 6 -communication 1 1752 31 5 - Production 0.39 24,348.0
jbook 1.4 GNU GPL 7 - educational 1 1276 52 5 - Production 0.28 29,400.9
jdom 1.1 Apache-style 2 - data format 3 8422 55 5 - Production 0.19 211,638.6
junit-addons 1.4 Apache Software

License
1 - software dev 1 4856 109 4 - Beta 0.45 231,488.3

kaprekar 3.0 GNU GPL, MPL 1.1 5 - math 1 1869 33 4 - Beta 0.21 27,576.4
mflow 0.1 GNU GPL 6 - communication 1 4172 86 3 - Alpha 0.33 157,283.6
org.eclipse.
core.runtime

3.3.1.1 Eclipse Public License 1 - software dev 100 2791 98 5 - Production 0.30 239,546.9

schemalizer 0.16 GNU LGPL 2 - data format 1 2524 29 3 - Alpha 0.17 32,826.6
xmlwriter 2.2.2 BSD License 2 - data format 2 953 6 5 - Production 0.70 3,318.1

subject

type

typesubject

s alerts

subjects
alerts

AD

∑
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

,

(4)

csvobjects

0
0.05
0.1

0.15
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

importscrubber

0

0.05

0.1
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

iTrust

0
0.1
0.2
0.3
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

jbook

0

0.1

0.2
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

jdom

0
0.05
0.1

0.15
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

org.eclipse.core.runtime

0

0.5

1
Domain

Dev

LoC

Alerts

Maturity

Alert Dist.

Figure 2: Polar Charts for Potential Benchmark Subjects

FINDBUGS were indications of anomalies in the subject programs.
The evaluated alerts provide an oracle for comparing FP mitigation
techniques. Table 2 presents the number of TP and FP alerts for
each of the benchmark subjects.

3.5.2 Source Code Changes
Adaptive FP mitigation techniques modify the prioritization of
uninspected alerts from developer feedback about an alert being an
indication of an important anomaly or a FP. Modification of an
alert’s prioritization occurs after each inspection or a set of
inspections. An alert closure occurs when static analysis tools no
longer identify the alert in the source code, usually due to an
anomaly fix directly or indirectly associated with the alert
description. Alert closures also occur due to configuration changes
and file deletions. Alert suppression is an explicit action taken by
the developer to indicate that an alert is a FP.

The evaluation of adaptive FP mitigation techniques requires fixing
TP alerts. However, alerts are not orthogonal; several alert types are
interrelated and a change to one may open or close another of a
complementary type, which may affect the priority or class of
remaining alerts. An alert fix should minimize the number of alert
opens and closures. For example, suppose a method opens and
closes a file stream within a try block with an empty catch block, as
shown in Figure 3. FINDBUGS would report two alerts: 1)
OS_OPEN_STREAM_EXCEPTION_PATH at line 3 reporting that the file
stream is not closed when there is an exception and 2)
DE_MIGHT_IGNORE at line 8 reporting that the exception is ignored.
Fixing the alert at line 3, by closing the stream in the exception
block, will also close the alert at line 8. When evaluating the
prioritization, we only care about closed alerts identified as TP in
the baseline. If an alert identified as FP was closed as part of an
alert fix, we do not count the alert in our metrics.

Additionally, new alerts may be opened when fixing TP alerts, as
shown in the example code in Figure 4. FINDBUGS reports an
ES_COMPARING_PARAMETER_STRING_WITH_EQ at line 2, meaning
that checking the equality of a and a constant string does not use
the .equals() method. If the alert at line 2 is fixed, a new alert
of the same type is opened at line 5 for a similar problem. When
inspecting alerts, alerts opened as part of another fix are ignored.
Only alerts present in the baseline were inspected and evaluated.

1 public void load() {
2 try {
3 BufferedReader in =
4 new BufferedReader(new
5 FileReader(file));
6 //do something with contents
7 in.close();
8 } catch (IOException e) {
9 }
10 }

Figure 3: Code Example – Additional Alert Closure

1 public void compare(String a) {
2 if (a == “”) {
3 //do something
4 }
5 if (a == “null”) {
6 //do something else
7 }
8 }

Figure 4: Code Example – Alert Opening
3.5.3 Experimental Controls
The OPTIMAL ordering of static analysis alerts has all TP alerts at the
top of the alert list; therefore, there are (TP!)(FP!) optimal
permutations. For the current version of FAULTBENCH the OPTIMAL
ordering is generated by a greedy analysis of the TP alerts. Alerts
are initially sorted hierarchically in the context of the subject
program (e.g. by project, source folder, class, method, line number,
alert type, and description), which provides a repeatable ordering
for alerts. To reduce potential bias, prioritization techniques should
use the same hierarchical alert ordering to break ties when alerts
share the same priority. Alerts are added to the OPTIMAL ordering by
the number of TP alerts that are closed when making an alert
change. When two alerts close the same number of TP alerts, first
the number of FP alerts closed is a tiebreaker, followed by the
hierarchical ordering of alerts. At a minimum, the optimal curve
will fix one TP alert at each inspection until all TP alerts are fixed.
The TOOL ordering of alerts is created from the tool’s alert log
information. The RANDOM ordering of alerts is generated via a
random number generator9. Cases where more than one alert is
closed must be considered when creating the OPTIMAL, RANDOM, and
TOOL prioritization. The prioritization of an uninspected closed alert
is a fraction of the number of alerts closed during an inspection. If
there were three alerts (a, b, and c) closed at inspection 3, then the
inspected alert (a) would have a rank of 3, the uninspected alert first
in the ordered listing (b) would have a rank of 3.33 and other
uninspected alert (c) would have a rank of 3.66. For an alert
inspected prior to a closure via a tangential change (suppose alert b
was inspected at inspection 2), the original inspection (2) is
maintained as the rank for that alert (b).

3.6 Benchmark Limitations
The subject programs in FAULTBENCH satisfy the seven desiderata
for benchmarks described by Sim et al. [18]. The main limitation of
FAULTBENCH is that the first author subjectively chose the
classification of the alerts as TP or FP after evaluation of the source
code. Another developer may classify alerts differently. Future
development of FAULTBENCH by multiple researchers will minimize
the subjectivity of the classification. Another limitation is the
generation of the OPTIMAL ordering. The current method of
generating the OPTIMAL ordering is biased towards the TOOL
ordering of alerts. Future work will consider generation of many
OPTIMAL orderings such that an average Spearman rank correlation
is obtained or the creation of an OPTIMAL ordering of alerts by
developers. Finally, the subject programs are all written in Java.
Therefore, results obtained on via FAULTBENCH may not be
applicable to alert prioritization in other programming languages.

4. BENCHMARK CASE STUDY
We assess the suitability of FAULTBENCH by evaluating three
variants of the AWARE-APM [5] FP mitigation technique.

9 A random sequence generator may be found at http://random.org.

Table 2: Benchmark subjects with alert counts
Subject TP

Alerts
FP

Alerts
% TP
Alerts

csvobjects 3 4 42.9%
importscrubber 11 24 31.4%
iTrust 10 100 9.1%
jbook 26 26 50.0%
jdom 9 46 16.4%
org.eclipse.core.runtime 8 90 8.2%
Average 11 51 26.3%

4.1 AWARE-APM
AWARE-APM [5] adaptively prioritizes and classifies static analysis
alerts by the likelihood an alert is an indication of an important
anomaly. Alerts are prioritized on the continuum, [-1,1] where:

• A priority in [-1,0) implies the alert is likely a FP,
• A priority in (0,1] implies the alert is likely a TP, and
• A priority of 0 means there is not enough information to

determine if the alert is likely a TP or FP.
Alerts share characteristics, which may demonstrate some causality
with the likelihood an alert is a TP. The alert type [5, 11] and alert
location [13] are the alert characteristics used in the current version
of AWARE-APM, and are presented in Section 4.1.3.
4.1.1 Size Context
The size context (SC) represents information about the size of the
alerts sharing a characteristic relative to the total number of alerts in
a subject. Alerts sharing a characteristic tend to be homogeneous [5,
13], and by increasing the priority of large sets, we can quickly
classify many alerts (similar to information gain in [13]). The size
context is the number of alerts sharing a characteristic divided by
the number of alerts for the project. The formula for calculating the
size context is presented in Equation 5.

alertstotal
alertsSC c

c #
#

= (5)

4.1.2 Developer Context
The developer context (DC) represents information about what the
developer has done to close and suppress alerts while using static
analysis during development. We take advantage of homogeneous
alert characteristics [5, 13] to utilize the developer’s feedback about
the alerts to predict the likelihood that other, similar alerts are
anomalies. The development context is the difference between
closed and suppressed alerts divided by the number of inspected
alerts as demonstrated in Equation 6.

cc suppressed#closed#
suppressed#closed#

+
−

= cc
cDC (6)

4.1.3 Alert Characteristics
Alert characteristics are an alert attribute that may have an
association with important anomalies. The following subsections
describe how we calculate the relationship between alerts sharing
the same characteristic like accuracy (ATA) and code locality (CL).
The coefficients to the baseline (βBC) and developer (βDC) context
have a value of 0.5 implying that the baseline and developer context
contribute equally to an alert characteristic calculation.

Alert Type Accuracy (ATA): ATA is the likelihood an alert (a) is an
anomaly based on the type of the alert (e.g. null pointer, unclosed
stream, etc.) [11, 12]. ATA is the weighted combination of the
baseline and developer context of the alert’s type. The ATA
calculation is described in Equation 7.

() () ()typeDCtypeSC DCSCaATA ∗+∗= ββ (7)

Code Locality (CL): CL is the likelihood an alert (a) is an anomaly
based on the location of the alert (e.g. at the source folder, class, or
method level). CL is the weighted combination of the baseline and
developer context of the alert’s location. The contribution of each
location is calculated by normalizing the counts of non-singleton
source folder, methods, and classes from Table 2b of [13]. The
coefficients for the contributions of the source folder, classes, and

methods are 0.06, 0.25, and 0.69, respectively and are represented
by the coefficients γsf, γc, and γm. We are only interested in the non-
singleton groups of alerts sharing a characteristic because any action
taken on an alert cans be used to predict if the other alerts in the
group are likely to be anomalies [13]. Singleton alerts do not
provide any predictive data. The calculation for CL is described in
Equation 8.

() () () ()()()
() () ()()()sfsfsfsfsfsfDC

sfsfsfsfsfsfSC

DCDCDC
SCSCSC

aCL
∗+∗+∗∗

+∗+∗+∗∗
=

γγγβ
γγγβ

 (8)

4.1.4 FP Mitigation
The overall alert prioritization calculation is the combination of alert
characteristic calculations divided by the number of alert
characteristics. Three versions of AWARE-APM FP mitigation
techniques are presented in Table 3.

Table 3: Experimental treatments for benchmark evaluation
Treatment Description or Formula AWARE Version
ATA () ()aATAaR = 1.7.1.1

CL () ()aCLaR = 1.7.2.0

ATA + CL () () ()
2

aCLaATAaR +
=

1.7.3.0

4.1.5 ARM Limitations
Similarly to [10, 11, 13], our prioritization technique works best
when the groups of alerts sharing a characteristic of interest are fine-
grained (e.g. many alert types and locations) and homogeneous.
Further research is required to determine how to prioritize static
analysis alerts with non-homogeneous groupings.

4.2 Case Study Specifics
Static analysis alerts were prioritized and presented to the developer
via the AWARE [5] Eclipse plug-in. AWARE gathers static analysis
alerts generated from FINDBUGS and prioritizes the alerts using one
of the prioritization functions presented in Table 3. AWARE
maintains alert closures and suppressions used to modify the
prioritization of the alerts. We used Eclipse version 3.3.1.1 for all
of the benchmark subjects except iTrust. For iTrust, we used the
Eclipse IDE for Java EE Developers version 3.3.1.1. Each version
of AWARE contains one of the three versions of the AWARE-APM FP
mitigation techniques. Table 3 also presents the AWARE version for
each of the prioritization techniques.

5. CASE STUDY RESULTS
FAULTBENCH provides data to answer the following research
questions:

• [Q1]: Can alert prioritization improve the rate of anomaly
detection when compared to the tool’s output?

• [Q2]: How does the rate of anomaly detection compare between
alert prioritization techniques?

• [Q3]: Can alert categorization correctly predict TP and FP
alerts?

Question 1 and 2 are answered by using the area under the curve
metric and the Spearman rank correlation, while question 3 is
answered using the precision, recall, and accuracy metrics.

5.1 Q1: Improving Anomaly Detection Rate
We plot the cumulative percentage of anomalies detected against
the number of inspections and measure the area under the curve to
evaluate Question 1. Figure 5 provides an example of these plots
for the jdom subject program. When TP alerts are fixed, the

percentage of detected anomaly increases. There are plateaus in the
prioritization curve when a FP alert is suppressed at an inspection.
A large plateau means there were a number of suppressions. A
good prioritization will minimize the large plateaus until most or all
of the TP alerts have been identified.

0.00

0.20

0.40

0.60

0.80

1.00

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Inspection

P
re

ce
nt

 o
f F

au
lts

 D
et

ec
te

d

Optimal Random ATA CL ATA + CL Tool

Figure 5: Fault Detection Rate Curves for jdom
Table 4 presents the area under the anomaly detection rate curve
metrics for each of the prioritization techniques and benchmark
subjects. The first question compares alert prioritization techniques
to the TOOL ordering of alerts. In the absence of prioritization,
developers only have the static analysis tool’s output for
investigation. If the tool’s ordering performs well, then alert
prioritization is not needed. However, all prioritization techniques
except on csvobjects and iTrust perform better than the tool
ordering. On average, all prioritization techniques have a larger
area under the curve (53.94% - 72.57%) than the TOOL ordering
(50.42%) of alerts.
Table 5 presents the Spearman rank correlation values between the
alert prioritization techniques and OPTIMAL. A positive correlation
implies that the specified prioritization is similar to the OPTIMAL
prioritization while a negative correlation implies that the specified
prioritization is opposite OPTIMAL. The closer the correlation is to 1
or -1, the stronger the match or opposition of the specified
prioritization. Cells containing one star (*) have correlations
significant at the 0.05 level, while cells containing two stars (**)
have correlations significant at the 0.01 level.

Table 5: Spearman Rank Correlation
 ATA CL ATA +

CL
TOOL

csvobjects 0.321 -0.643 -0.393 0.607
importscrubber 0.512** -0.026 0.238 0.203
iTrust 0.418** 0.264** 0.261** 0.772**
jbook 0.798** 0.389** 0.599** -0.002
jdom 0.675** 0.288* 0.457** 0.724**
org.eclipse.
core.runtime

0.395** 0.325** 0.246* 0.691**

The TOOL experimental control prioritization has a moderately
strong correlation (e.g. correlation value > 0.600) with OPTIMAL for
four of the subject programs. The strong correlation is likely due to

a similar ordering of the FP alerts, and is not necessarily an
indication of the anomaly detection capabilities of the TOOL
ordering. For example, the TOOL ordering for jdom has a
correlation of 0.724; however, the area under the anomaly detection
curve for TOOL is at least 20% less than ATA, CL, and ATA+CL as
seen in Table 4.

5.2 Q2: Comparing Prioritizations
Table 4 presents the area under the fault detection rate curve metrics
for each of the prioritization techniques on FAULTBENCH subjects.
The average area under an optimal curve is 90.0%. The ATA
prioritization is closer to OPTIMAL than CL prioritization.
Additionally, the average ATA area is 30% larger than CL’s average
area. ATA+CL splits the difference between ATA’s and CL’s
prioritization.
Table 5 presents the Spearman rank correlation values between the
alert prioritization technique and OPTIMAL. The correlations
between the alert prioritization techniques and OPTIMAL are similar
to the patterns observed in the area under the curve measurement in
Table 4. However, the ATA correlation with OPTIMAL is typically
stronger, indicating that ATA is the better prioritization technique.

5.3 Q3: Categorizing Alerts
Table 6 presents the average precision, recall, and accuracy metrics
before each inspection when adaptively categorizing static analysis
alerts. We only consider the precision, recall, and accuracy metrics
for uninspected alerts because we are trying to predict if the
uninspected alerts are TPs or FPs. A priority greater than 0 is a
prediction that the alert is a TP while a priority less than 0 is a
prediction that an alert is a FP. We then assess the prioritization’s
classification using the alert oracle and the priority, as shown in
Table 7.

If the alert falls in the TPC or TNC categories, the prioritization
correctly classified the alert as TP or FP. As we learn more about
the alerts from the developers, we expect the precision, recall, and
accuracy to increase; however, the precision and recall tended to be
0 because after all TP alerts were identified, there was no longer a
numerator in the precision and recall equations. The average
accuracy is a better measure of how the classification techniques
performed. ATA had the best average accuracy, and correctly
predicted if an alert is a TP or FP 76% of the time.

Table 7: Alert Classification Assessment
 Alert Oracle Ranking
True Positive (TPC) TP > 0
True Negative (TNC) FP < 0
False Positive (FPC) FP > 0
False Negative (FNC) TP < 0

Table 4: Area under the fault detection curve for ranking techniques

Subject Optimal Random ATA CL ATA + CL Tool
csvobjects 78.57% 59.52% 50.00% 21.43% 30.39% 54.76%
importscrubber 84.29% 71.82% 66.10% 40.91% 66.62% 36.23%
iTrust 95.5% 48.91% 74.36% 68.09% 67.36% 75.09%
jbook 78.55% 49.83% 46.26% 62.57% 74.19% 39.87%
jdom 91.82% 71.66% 86.16% 63.54% 85.35% 46.89%
org.eclipse.core.runtime 96.81% 68.61% 82.53% 67.09% 82.78% 49.67%
Average 87.58% 61.73% 72.57% 53.94% 67.88% 50.42%

5.4 Benchmark Evaluation
FAULTBENCH contains six programs of varying sizes from several
domains. The programs with more than 50 static analysis alerts had
more statistically significant results when comparing alert
prioritizations with OPTIMAL using the Spearman rank correlation,
than the smaller programs. Additionally, if jbook or iTrust
were the only subject used to evaluate alert prioritization techniques
the ATA+CL and TOOL prioritizations were the best prioritizations,
respectively, when with a larger sample, ATA was the best
prioritization technique. The same discrepancy applies when
evaluating the classification accuracy of ATA+CL on
org.eclipse.core.runtime.

The results of the Spearman rank correlation suggest there is bias in
the creation of the OPTIMAL order because the TOOL ordering has a
moderately strong correlation (> 0.600) with OPTIMAL for four of the
subject projects. OPTIMAL defaults to an ordering of alerts by
project, source folder, file, method, alert type, line number, and
description in the case of a tie. The above ordering is very similar
to the TOOL ordering for FINDBUGS due to the use of the Visitor
pattern [6]. There are several optimal orderings of alerts, and a
semi-randomized ordering may have less bias to the FINDBUGS-TOOL
ordering of alerts.

5.5 Case Study Limitations
We consider the three threats to the validity of our case study [17]:
construct validity, internal validity, and external validity.

5.5.1 Construct Validity
Construct validity concerns our measurements. The measurements
are straight forward and standard for prioritization analysis. In
AWARE and the small program used for automating the analysis of
the inspection records, possible inconsistencies in our
measurements could occur when comparing the static analysis alerts
due to line and source code changes during anomaly fix. We
consider static analysis alerts to be the same if they share several
characteristics including the line number and a hash of the source
line. The line number can change through addition or deletion of
surrounding code and the source hash can change via refactoring. If
both of these characteristics change, we can no longer track the
alert. When fixing alerts in the case study, we ensured that only one
of the two characteristics was modified for other alerts in the same
class. An additional complication is duplicate alerts. An alert is a
duplicate when there are two alerts of the same type on the same
line of code. The alert display combines the alerts into one listing.
Therefore, suppression of the alert listing leads to suppression of
both alerts.

5.5.2 Internal Validity
Internal validity concerns the causal relationship between the
dependent and independent variables. We are concerned with

understanding if the alert characteristics of ATA and CL are indicative
of anomalies of importance to the developer. The classification of
alerts as TP and FP are from the subjective inspection of the alerts
by the first author; therefore, a causal relationship between ATA and
CL and the TP and FP classification of the alerts may be
exaggerated.

5.5.3 External Validity
External validity concerns how we can generalize our results.
Using FAULTBENCH mitigates some of the concerns about
generalizing the FP mitigation results due to the varying domains of
the subject programs and a larger sample size. Additionally, each of
the subject programs is an open source application with real
anomalies. However, the programs are relatively small, and there
are concerns about scale.

6. CONCLUSIONS AND FUTURE WORK
The literature in the realm of static analysis FP mitigation is moving
towards a definition of how to conduct static analysis FP mitigation
research [10, 11, 13, 15, 21, 24]. We present FAULTBENCH to
supplement the current benchmarks in other languages (e.g.
BUGBENCH [15]) and larger Java benchmarks in specific sub-
domains (e.g. CHORD subjects [16] for race detection). FAULTBENCH
V0.1 is available for use and critique at
http://agile.csc.ncsu.edu/faultbench.

We evaluated three alert FP mitigation techniques against the six
subjects in FAULTBENCH. Evaluation of the FP mitigation techniques
against individual benchmark subjects produced varying results. On
jbook the ATA+CL prioritization had a larger area under the
anomaly detection curve; however, ATA prioritization had a higher
rate of anomaly detection on average. In addition, the TOOL
ordering performed better than the alert prioritization techniques for
csvobjects. Individually, the benchmark subjects provide
varying results, but together, a larger sample of subject programs
provides a better understanding of how FP mitigation techniques
work and increase the generalization of experimental conclusions.

We present FAULTBENCH v0.1 to foster collaboration and
communication within the static analysis alert prioritization
community. We will continue to evolve the benchmark, and
feedback from within the community will improve the subjectivity
of FAULTBENCH. Additionally, we will continue to investigate static
analysis FP mitigation techniques, by analyzing the contributions of
the alert characteristic calculations via FAULTBENCH, and modifying
the prioritization accordingly.

7. ACKNOWLEDGMENTS
This research is funded by an IBM PhD Fellowship awarded to the
first author. We would like to thank the RealSearch reading group,
particularly Andy Meneely, and the reviewers for their feedback.

Table 6: Average precision, recall, and accuracy metrics of un-inspected alerts at before each inspection

Subject Average Precision Average Recall Average Accuracy
 ATA CL ATA +CL ATA CL ATA +CL ATA CL ATA +CL
csvobjects 0.32 0.50 0.39 .038 .048 0.38 0.58 0.34 0.46
import-scrubber 0.34 0.20 0.18 0.24 0.28 0.45 0.62 0.43 0.56
iTrust 0.05 0.02 0.05 0.16 0.15 0.07 0.97 0.84 0.91
jbook 0.22 0.27 0.23 0.65 0.48 0.61 0.68 0.62 0.66
jdom 0.06 0.09 0.06 0.31 0.07 0.29 0.88 0.86 0.88
org.eclipse.core.runtime 0.05 0.04 0.03 0.17 0.05 0.11 0.92 0.94 0.95
Average 0.17 0.19 0.16 0.42 0.25 0.32 0.76 0.67 0.74

We would like to thank Ben Smith for suggesting the benchmark
name.

8. REFERENCES
[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y.

Zhou, "Evaluating Static Analysis Defect Warnings On
Production Software," Proceedings of the 7th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, San Diego, CA, USA, June 13-14, 2007, pp.
1-8.

[2] B. W. Boehm and R. Turner, Balancing Agility and Discipline:
A Guide for the Perplexed: Addison-Wesley, 2003.

[3] G. Boetticher, T. Menzies, and T. Ostrand, "PROMISE
Repository of Empirical Software Engineering Data,"
http://promisedata.org/ repository, West Virginia University,
Department of Computer Science, 2007.

[4] C. Boogerd and L. Moonen, "Prioritizing Software Inspection
Results using Static Profiling," Proceedings of the 6th IEEE
Workshop on Source Code Analysis and Manipulation,
Philadelphia, PA, USA, September 27-29, 2006, pp. 149-160.

[5] S. S. Heckman, "Adaptively Ranking Alerts Generated from
Automated Static Analysis," in ACM Crossroads. vol. 14, no.
1, 2007, pp. 16-20.

[6] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy,"
Proceedings of the 19th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Vancouver, British Columbia, Canada, October 24-28, 2004,
pp. 132-136.

[7] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
"Experiments on the Effectiveness of Dataflow- and
Controlflow-Based Test Adequacy Criteria," Proceedings of
the 19th International Conference on Software Engineering,
Sorrento, Italy, May 16-21, 1994, pp. 191-200.

[8] IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary
of Software Engineering Terminology," 1990.

[9] IEEE, "IEEE 1028-1997 (R2002) IEEE Standard for Software
Reviews," 2002.

[10] S. Kim and M. D. Ernst, "Prioritizing Warning Categories by
Analyzing Software History," Proceedings of the International
Workshop on Mining Software Repositories, Minneapolis,
MN, USA, May 19-20, 2007, p. 27.

[11] S. Kim and M. D. Ernst, "Which Warnings Should I Fix
First?," Proceedings of the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
Dubrovnik, Croatia, September 3-7, 2007, pp. 45-54.

[12] S. Kim, T. Zimmermann, J. E. James Whitehead, and A.
Zeller, "Predicting Faults from Cached History," Proceedings
of the 29th International Conference on Software Engineering,
Minneapolis, MN, USA, May 23-25, 2007, pp. 489-498.

[13] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler,
"Correlation Exploitation in Error Ranking," Proceedings of
the 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Newport Beach, CA,
USA, 2004, pp. 83-93.

[14] T. Kremenek and D. Engler, "Z-Ranking: Using Statistical
Analysis to Counter the Impact of Static Analysis
Approximations," Proceedings of the 10th International Static
Analysis Symposium, San Diego, California, 2002.

[15] S. Lu, Z. Li, F. Oin, L. Tan, P. Zhou, and Y. Zhou,
"BugBench: Benchmarks for Evaluating Bug Detection
Tools," Proceedings of the Workshop on the Evaluation of
Software Defect Detection Tools, Chicago, Illinois, 2005.

[16] M. Naik and A. Aiken, "Effective Static Race Detection for
Java," Proceedings of the ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation, Ottawa,
Canada, June 10-16, 2006, pp. 308-319.

[17] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
"Prioritizing Test Cases For Regression Testing," IEEE
Transactions on Software Engineering, vol. 27, no. 10, pp.
929-948, October, 2001.

[18] S. E. Sim, S. Easterbrook, and R. C. Holt, "Using
Benchmarking to Advance Research: A Challenge to Software
Engineering," Proceedings of the 25th International
Conference on Software Engineering, Portland, Oregon, USA,
May 3-10, 2003, pp. 74-83.

[19] W. F. Tichy, "Should Computer Scientists Experiment
More?," in Computer. vol. 31, no. 5, 1998, pp. 32-40.

[20] S. Wagner and M. A. Florian Deissenboeck, Johann Wimmer,
Markus Schwalb, "An Evaluation of Two Bug Pattern Tools
for Java," Proceedings of the 1st IEEE International
Conference on Software Testing, Verification, and Validation,
Lillehammer, Norway, to appear, 2008.

[21] C. C. Williams and J. K. Hollingsworth, "Automatic Mining of
Souce Code Repositories to Improve Bug Finding
Techniques," IEEE Transactions on Software Engineering,
vol. 31, no. 6, pp. 466-480, 2005.

[22] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, 2nd ed. Amsterdam: Morgan
Kaufmann, 2005.

[23] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl,
and M. Vouk, "On the Value of Static Analysis for Fault
Detection in Software," IEEE Transactions on Software
Engineering, vol. 32, no. 4, pp. 240-253, April, 2006.

[24] T. Zimmermann, R. Premraj, and A. Zeller, "Predicting
Defects in Eclipse," Proceedings of the 3rd International
Workshop on Predictor Models in Software Engineering,
Minneapolis, MN, USA, May 20, 2007, p. 9.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

