
Using Groupings of Static Analysis Alerts to Identify Files
Likely to Contain Field Failures

Mark Sherriff, Sarah Smith
Heckman

NC State University, IBM
890 Oval Drive

Raleigh, NC, USA
+1-919-513-5082

{mssherri, sesmith5}@ncsu.edu

Mike Lake
IBM

3901 S. Miami Blvd.
Durham, NC, USA

johnlake@us.ibm.com

Laurie Williams
NC State University

890 Oval Drive
Raleigh, NC, USA
+1-919-513-4151

williams@csc.ncsu.edu

ABSTRACT
Static analysis tools tend to generate more false positives than true
positives. In this paper, we propose a technique for leveraging
historical field failure records in conjunction with automated
static analysis alerts to determine which alerts or sets of alerts are
predictive of a field failure. Our technique uses singular value
decomposition to generate groupings of static analysis alert types,
which we call alert signatures, that have been historically linked
to field failure-prone files in previous releases of a software
system. The groups alert signatures can be applied to sets of alerts
from a current build of a software system. Files containing an alert
signature are identified as having similar static analysis alert
characteristics to files with known field failures in a previous
release of the system. We performed a case study involving an
industrial software system at IBM and found three distinct alert
signatures that could be applied to the system. We found that
50% of the field failures reported since the last static analysis run
could be discovered by examining the 10% of the files and static
analysis alerts indicated by the alert signatures. The remaining
failures were either not detected by a signature (30%) which could
be an indication of a new type of error in the field, or they were
on areas of the code where no static analysis alerts were detected.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
Symbolic execution, Testing tools

General Terms
Management, Measurement, Reliability, Experimentation

Keywords
Static Analysis, Singular Value Decomposition, Field Failures

1. INTRODUCTION
Static analysis is the process of evaluating a system or component
based on its form, structure, content, or documentation [2]
without execution of the code. Static analysis tools search for
implementation problems associated with a predefined set of rules
of potential anomalies in the source code. The static analysis rule
types range from possible mistypes in the code (e.g. = instead of
==) to more complex errors in the system logic (e.g. memory
leaks). We term the use of static analysis tools to represent
automated static analysis (ASA). An ASA alert is a report from

the ASA tool indicating an area of the code base that has broken a
specific type of ASA rule.

Research has shown that ASA alerts can identify certain
classifications of faults and field failures [8]. However, the
number and pervasiveness of certain alert types could show that
nearly all the files in the system are potentially failure-prone. A
failure-prone file is any file that contains a field failure [8]. The
number of static analysis alerts reported by the static analyzer
could overwhelm the development team. Certain alert types, and
certain combinations of alerts found together, could be used to
reduce the number of identified failure-prone files to those that
are most likely to contain failures based upon previous versions of
the system.

Our research goal is to provide a methodology for highlighting
files that contain groups of static analysis alerts historically
associated with field failures. To address this goal, we have
developed a technique that leverages historical field failures and
change records in conjunction with ASA alerts to generate ASA
alert signatures. An ASA alert signature is a set of static analysis
alert types that has historically been associated with one or more
field failures in a particular project. We generate ASA alert
signatures by using singular value decomposition (SVD). The
SVD provides a means for associating files with field failures and
ASA alerts with those files. A set of files that has changed
together are identified as failure-prone if a future version of the
set of files contains all of the alert types in an ASA alert signature.

Our hypothesis is that automated static analysis alert signatures
generated from historical information through singular value
decomposition can identify files that are the likely to contain field
failures. To test our hypothesis, we performed an experiment on
three components of a large industrial software system. Over a
year of static analysis and field failure information was analyzed
from an industrial software system in this research.

2. RELATED WORK
In this section, we will discuss related work and background
literature in automated static analysis.

2.1 Automated Static Analysis
Tools can be used to automate the process of performing static
analysis. ASA may be run throughout the development process
since this analysis does not require execution [1]. However, static
analysis tools suffer from several problems. The main problem
with static analysis is that many of these tools have a high rate of

false positives due to approximations made to the analysis [1].
Because ASA tool generates false positive alerts, developers must
inspect the alerts generated from ASA tools to verify the accuracy
of the alerts for fault fixes [1].

We used an internal IBM ASA tool in our investigation. One of
the main goals of this tool is to avoid as many false positives as
possible while not requiring any extra specification from the user.
The tool spends extra execution cycles traversing paths that it
identifies as leading to an error to ensure that the path is indeed
executable. This extra computation increases the runtime of the
tool in comparison to other ASA tools.

The ASA tool classifies its 74 different ASA alerts into five
categories: error, mistake, warning, security, and portability. An
error alert is a high priority alert, with mistake and warning as
medium and low priority, respectively. Security alerts indicate
areas where the program may be subverted, such as unverified
inputs. Portability alerts are for problems that would only appear
if the code is ported to another machine with a different bit depth
(such as 32-bit to 64-bit). Each alert category can be enabled or
disabled according to the developer’s preferences.

2.2 Using ASA Alert to Separate High Quality
Components
Other studies have also analyzed the ability of ASA alerts to
narrow the focus on fault- or failure prone areas of code. Static
analysis alerts were used to predict the pre-release fault density of
Windows Server 2003 [4]. The research demonstrated a positive
correlation between the ASA fault density and pre-release testing
fault density and that discriminant analysis of ASA faults could be
used to separate high- from low-quality components with 83%
accuracy. Additionally, a study was conducted of the use of static
analysis at Nortel [5, 8]. ASA and failure data from three products
(over three million lines of code) that underwent ASA during test
were analyzed [5, 8]. The data demonstrated a statistically-
significant correlation between the number of ASA alerts and field
failures in a module (a grouping of files). These results indicate
that when a module has a large quantity of ASA faults, the module
is likely to be problematic in the field, information that can be
used to prioritize validation and verification (V&V) efforts prior
to release. Finally, discriminant analysis indicated that ASA
faults could be used to separate fault-prone from non-fault prone
modules with 87.5% accuracy. In both of these studies, only the
quantity of ASA alerts was used. In our study, we use
information about the types of the alerts and about historical
relationships of sets of alerts that historically appear together in
code with field failures.

3. GENERATING ALERT SIGNATURES
Our methodology is dependant upon historical, empirical
information gathered throughout the development process
between two builds of a software project. Historical records of
field failures, change records, and static analysis results are all
required to generate accurate ASA alert signatures. Once we have
found appropriate data sources and are reasonably confident that
the data is accurate in associating code changes with specific
failures, we can find associations between files based upon what
files changed together due to repairing field failures. We begin by
gathering source code change records and fault information to

populate a matrix M that indicates how many times files have
changed together in response to a field failure.

The rows and columns of the matrix are comprised of every file in
the system. The values within the matrix indicate the number of
times that the files assigned to that row and column combination
have changed together to repair a specific fault. The values on the
diagonal of the matrix represent the total number of times that a
file has changed because of a field failure.

After the change records and field failure information has been
gathered and put into the matrix M, we perform the SVD on the
matrix to determine what files tend to be associated with the field
failures. When we perform the SVD on the matrix M, matrices U,
S, and V are generated. The columns of the U and V matrices
provide information as to the structure of the association clusters,
while the singular values from the S matrix represent the amount
of variability each association cluster contributes to the original
analysis matrix. An association cluster is formed by taking the
files in each column of the matrix U that has the same sign. Thus,
each column in effect can produce two separate association
clusters. We are interested in these association clusters because
our overall goal is to find out what sets of ASA alerts are
associated with field failures. To detect the association between
ASA alerts and field failures, we need to analyze the files that are
common between the field failures and the ASA alerts.

Using the singular values from the S matrix, we can determine
how many of the association clusters we will use in our analysis.
We do not use all of the generated clusters due to cluster
duplication and because clusters that have relatively small
singular values are not linked together strongly and thus have less
value. A cluster’s strength, represented by the size of the singular
value coupled with it, indicates the amount of variability that the
association cluster provides to the original analysis matrix [7].
Osinski used a threshold of 90% to determine the appropriate
number of clusters to examine [6].

Once we know what files are strongly associated with field
failures, we can then determine how the ASA alerts compare with
these file clusters. In this step, we will create a new matrix M.
However, this matrix will be an asymmetric matrix with the
previously generated clusters on one axis and the different types
of static analysis alerts on the other. The values in the matrix M
will be the difference in then number of ASA alerts found
between two baseline ASA runs. We are interested in the
difference between two baselines because this will highlight any
possible correlation between the removal of ASA alerts with
fewer field failures and visa-versa. Performing a SVD on the new
matrix M yields another set of U, S, and V matrices. We can
interpret these matrices in much the same way as before, where
the columns of U indicate clusters of ASA alerts.

After the ASA alert signatures have been generated and identified,
each subset of ASA alert types found in a given signature can be
compared to a full set of ASA alerts from a code base. However,
since these ASA alert signatures were generated based on clusters
of files, the signatures need to be applied in a similar fashion.
Clusters of files in the system are generated in the same way as
previously described, except that we examine all changes in the
system that were made to modify all faults, as opposed to just
those changes made to repair field failures so that we can examine
all areas of the system for potential faults. Once these clusters

have been generated, the alerts contained in each cluster can be
gathered based upon the files within each cluster. ASA alert
signatures can then be compared the alerts associated with each
file cluster to determine which areas of the system may require
further V&V efforts.

4. IBM CASE STUDY
During the spring of 2007, we performed a case study of our
technique with a large software system. In this section, we will
describe our case study experience and our results.

4.1 Case Study Setup
We selected Matlab 7.2 R2006a as our SVD tool and used an
internal ASA tool for generating ASA alerts. We performed our
case study on three modules of a large industrial project. We
selected these particular modules (totaling 5,244 files) because
they were primarily written in C and C++, which are two of the
languages that this particular version of the ASA tool could
analyze. We generated ASA signatures from clusters of files
which changed together due to field failures between two releases
from late October 2005 and mid-December 2006. ASA was run
on each release of the software, and we gathered information on
the files, alert types, and line numbers where the alerts appeared.
All 74 alert types from the five categories of alerts were included.
ASA alerts were associated with clusters of files and the
difference between the two releases was calculated for generating
the ASA alert signature clusters.

4.2 ASA Alert Signatures
Using our technique, three ASA alert signatures were created in
this case study. The three signatures were:

ASA Alert Signature 1: A Misstep in the Path
• M5: Expression always evaluates true or false
• W5: Operator “=” in the Boolean expression should

possibly be “==”
• W13: Function never used
• P2: The cast (int)long will cause truncation on the

portability target machine
• S2: Passing untrusted input to argument

ASA Alert Signature 2: Common Errors
• W15: then/else/loop not surrounded by braces
• W16: Function accesses the same variable through two

parameters
• M18: Comparing pointers to strings
• E18: Function lacks a return statement with a value

ASA Alert Signature 3: Memory Leaks
• E23h: Heap memory leak
• W9: Return of function not used
• M21: Advisory has been issued for this function

4.3 Applying the ASA Alert Signatures
We examined the ASA alerts that were generated on the
December 2006 release of the software system using the alert
signatures that were previously created to identify sections of the
system that may contain field failures. In this release, the tool
generated ASA alerts on 2,448 files. We then collected field

failure information from December 2006 to March 2007 to
determine failure-prone files. The focus of our technique is to
highlight areas of the code base that are the most likely areas to
produce field failures based upon historical evidence regarding
ASA alerts and then compare those areas to actual reported field
failures. A summary of the effects of applying the ASA alert
signatures can be found in Table 1.

Table 1. Summary of Effects of Applying Alert Signatures.

 Before Applying
ASA Signatures

After Applying
ASA Signatures

Total Files to
Examine

2,448 393

File Reduction 53% 93%

Reduction in # of
ASA alerts to be
examined

N/A 70%

Percentage of field
failures that could
be found if all files
were analyzed

79.6% 49.5%

Absolute False
Positive Rate
Improvement

N/A 20%

Using the ASA alert signatures, there was a significant reduction
in the number of files and ASA alerts that need to be analyzed.
As mentioned, the ASA tool reported at least one alert each of the
2,448 files that it was run against. After applying the ASA alert
signatures, 393 of the 2448 files were identified as having alert
types similar to a previous field failure. There is, however, a
reduction in the number of field failures found verses checking
every file that contained at least one static analysis alert. Note
that our technique highlights areas of the code base that may
contain field failures based upon previous development efforts
and field failure reports. The field failures that could not be
identified by the ASA alert signatures do not match any previous
alert patterns in reported field failures. Note that nearly 50% of
the field failures still fall under a similar ASA alert pattern from
previous releases, indicating that a large percentage of field
failures come from a relatively common and consistent set of
mistakes. If every file that contained a static analysis alert was
examined, only 79.6% of the field failures would be detected.
Research has shown that ASA tools can only find certain types of
programmer errors [8] and, thus, cannot be expected to find all
faults that lead to field failures.

4.4 Comparison to Other Techniques
We also examined the efficacy of our technique against the
models proposed by Zheng et al. [8] and Nagappan and Ball [3]
Both Zheng et al. and Nagappan and Ball proposed that ASA alert
density could be a predictor of pre-release fault density. The main
difference between the research presented in this paper and these
two studies is the granularity level throughout the work. Zheng et
al. and Nagappan and Ball use the overall number of alerts or the
alert density to predict whether a module is fault-prone or not,

while we focus on fault-prone files. Therefore, we also
investigated whether there was a correlation between the number
ASA alerts and field failures at the file level to better compare our
technique to theirs. The results of the correlation analysis at the
file level can be found in Table 3.

Table 3. Summary of Spearman Rank Correlation for Files

 # ASA
alerts

test
faults

field
failures

total
failures

Correlation
Coefficient

1 .182 .139 .212 # ASA
alerts

Sig. . .001 .001 .001

Correlation
Coefficient

 1 .143 .924 # test
failures

Sig. . .001 .001

Correlation
Coefficient

 1 .510 # field
failures

Sig. . .001

As shown in Table 3, we did not find a strong correlation between
the number of ASA alerts and the number of field failures. We
also used a discriminant analysis to predict the fault-prone files in
a similar fashion to Zheng. We found that our technique had a
15.4% improvement in true positive rate over their discriminant
analysis at the file level for this data set. From this we conclude
that while we found similar results as Zheng and Nagappan at the
module level, our technique showed some improvement at the file
level.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a technique for combining a
project’s historical field failure information, change records, and
static analysis alerts to generate ASA alert signatures. These alert
signatures consist of groupings of ASA alert types that have been
directly linked to field failures in previous releases. By applying
these signatures to a current set of ASA alerts, developers can
isolate specific files and alert types that historically have led to
field failures. Our technique differentiates itself from other
techniques by being applied at the file level as opposed to module
level, and by highlighting specific groupings of alerts with alert
density as opposed to just alert density.

We performed a case study with an industrial software system at
IBM to evaluate our technique. Field failure information, change
records, and ASA alerts were gathered on two releases of the
system over a 14-month period. The data from these releases
were used to build ASA alert signatures that correspond to field
failures found between those two releases. We then applied these
ASA alert signatures to the alert set from the latest release to

predict the failure-prone files for the following three months. We
found that 50% of the field failures could be discovered by
examining the 10% of the files and static analysis alerts indicated
by the alert groupings. The remaining failures were either not
detected by a signature (30%) which could be an indication of a
new type of error in the field, or they were on areas of the code
where no static analysis alerts were detected.

The analyses presenting in this paper using SVD, both in the
background section and in the current work, show examples of
how relationships between files can be detected using software
development artifacts, such as faults, field failures, and ASA
alerts. We are currently continuing to examine the various
different types of development artifacts that could be used to help
drive development decisions.

6. REFERENCES
[1] Chess, B. and McGraw, G., "Static Analysis for

Security," IEEE Security and Privacy,
November/December 2004 ed, 2004, pp. 32-35.

[2] IEEE, "IEEE Standard 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminology," 1990.

[3] Nagappan, N. and Ball, T., "Static Analysis Tools as
Early Indicator of Pre-Release Defect Density,"
International Conference on Software Engineering, St.
Louis, MO, USA, 2005, pp. 580-586.

[4] Nagappan, N. and Ball, T., "Static Analysis Tools as
Early Indicators of Pre-Release Defect Density,"
International Conference on Software Engineering
(ICSE), St. Louis, MO, 2005.

[5] Nagappan, N., Williams, L., Vouk, M., Hudepohl, J.,
and Snipes, W., "A Preliminary Investigation of
Automated Software Inspection," IEEE International
Symposium on Software Reliability Engineering
(ISSRE), St. Malo, France, 2004, pp. 429-439.

[6] Osinski, S., Stefanowski, J., and Weiss, D., "Lingo:
Search Results Clustering Algorithm Based on Singular
Value Decomposition," Advances in Soft Computing,
Intelligent Information Processing and Web Mining,
Zakopane, Poland, 2004, pp. 359-368.

[7] Will, T., "Introduction to the Singular Value
Decomposition," vol. 2006: UW-La Crosse, 1999.

[8] Zheng, J., Williams, L., Nagappan, N., Snipes, W.,
Hudepohl, J., and Vouk, M., "On the Value of Static
Analysis for Fault Detection in Software," IEEE
Transactions on Software Engineering, vol. 32, pp.
240-253, 2006.

