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ABSTRACT 
Static analysis tools tend to generate more false positives than true 
positives.  In this paper, we propose a technique for leveraging 
historical field failure records in conjunction with automated 
static analysis alerts to determine which alerts or sets of alerts are 
predictive of a field failure.  Our technique uses singular value 
decomposition to generate groupings of static analysis alert types, 
which we call alert signatures, that have been historically linked 
to field failure-prone files in previous releases of a software 
system. The groups alert signatures can be applied to sets of alerts 
from a current build of a software system. Files containing an alert 
signature are identified as having similar static analysis alert 
characteristics to files with known field failures in a previous 
release of the system. We performed a case study involving an 
industrial software system at IBM and found three distinct alert 
signatures that could be applied to the system.  We found that 
50% of the field failures reported since the last static analysis run 
could be discovered by examining the 10% of the files and static 
analysis alerts indicated by the alert signatures.  The remaining 
failures were either not detected by a signature (30%) which could 
be an indication of a new type of error in the field, or they were 
on areas of the code where no static analysis alerts were detected.   

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – 
Symbolic execution, Testing tools 

General Terms 
Management, Measurement, Reliability, Experimentation 

Keywords 
Static Analysis, Singular Value Decomposition, Field Failures 

1. INTRODUCTION 
Static analysis is the process of evaluating a system or component 
based on its form, structure, content, or documentation [2] 
without execution of the code.  Static analysis tools search for 
implementation problems associated with a predefined set of rules 
of potential anomalies in the source code.  The static analysis rule 
types range from possible mistypes in the code (e.g. = instead of 
==) to more complex errors in the system logic (e.g. memory 
leaks).  We term the use of static analysis tools to represent 
automated static analysis (ASA).  An ASA alert is a report from 

the ASA tool indicating an area of the code base that has broken a 
specific type of ASA rule. 

Research has shown that ASA alerts can identify certain 
classifications of faults and field failures [8].  However, the 
number and pervasiveness of certain alert types could show that 
nearly all the files in the system are potentially failure-prone. A 
failure-prone file is any file that contains a field failure [8]. The 
number of static analysis alerts reported by the static analyzer 
could overwhelm the development team.  Certain alert types, and 
certain combinations of alerts found together, could be used to 
reduce the number of identified failure-prone files to those that 
are most likely to contain failures based upon previous versions of 
the system. 

Our research goal is to provide a methodology for highlighting 
files that contain groups of static analysis alerts historically 
associated with field failures.  To address this goal, we have 
developed a technique that leverages historical field failures and 
change records in conjunction with ASA alerts to generate ASA 
alert signatures.  An ASA alert signature is a set of static analysis 
alert types that has historically been associated with one or more 
field failures in a particular project.  We generate ASA alert 
signatures by using singular value decomposition (SVD).  The 
SVD provides a means for associating files with field failures and 
ASA alerts with those files.  A set of files that has changed 
together are identified as failure-prone if a future version of the 
set of files contains all of the alert types in an ASA alert signature. 

Our hypothesis is that automated static analysis alert signatures 
generated from historical information through singular value 
decomposition can identify files that are the likely to contain field 
failures.  To test our hypothesis, we performed an experiment on 
three components of a large industrial software system. Over a 
year of static analysis and field failure information was analyzed 
from an industrial software system in this research. 

2. RELATED WORK 
In this section, we will discuss related work and background 
literature in automated static analysis. 

2.1 Automated Static Analysis 
Tools can be used to automate the process of performing static 
analysis. ASA may be run throughout the development process 
since this analysis does not require execution [1].  However, static 
analysis tools suffer from several problems.  The main problem 
with static analysis is that many of these tools have a high rate of 



false positives due to approximations made to the analysis [1].  
Because ASA tool generates false positive alerts, developers must 
inspect the alerts generated from ASA tools to verify the accuracy 
of the alerts for fault fixes [1].   

We used an internal IBM ASA tool in our investigation.  One of 
the main goals of this tool is to avoid as many false positives as 
possible while not requiring any extra specification from the user.  
The tool spends extra execution cycles traversing paths that it 
identifies as leading to an error to ensure that the path is indeed 
executable.  This extra computation increases the runtime of the 
tool in comparison to other ASA tools.  

The ASA tool classifies its 74 different ASA alerts into five 
categories: error, mistake, warning, security, and portability.  An 
error alert is a high priority alert, with mistake and warning as 
medium and low priority, respectively.  Security alerts indicate 
areas where the program may be subverted, such as unverified 
inputs.  Portability alerts are for problems that would only appear 
if the code is ported to another machine with a different bit depth 
(such as 32-bit to 64-bit).  Each alert category can be enabled or 
disabled according to the developer’s preferences. 

2.2 Using ASA Alert to Separate High Quality 
Components 
Other studies have also analyzed the ability of ASA alerts to 
narrow the focus on fault- or failure prone areas of code.  Static 
analysis alerts were used to predict the pre-release fault density of 
Windows Server 2003 [4]. The research demonstrated a positive 
correlation between the ASA fault density and pre-release testing 
fault density and that discriminant analysis of ASA faults could be 
used to separate high- from low-quality components with 83% 
accuracy.  Additionally, a study was conducted of the use of static 
analysis at Nortel [5, 8]. ASA and failure data from three products 
(over three million lines of code) that underwent ASA during test 
were analyzed [5, 8].  The data demonstrated a statistically-
significant correlation between the number of ASA alerts and field 
failures in a module (a grouping of files).  These results indicate 
that when a module has a large quantity of ASA faults, the module 
is likely to be problematic in the field, information that can be 
used to prioritize validation and verification (V&V) efforts prior 
to release.  Finally, discriminant analysis indicated that ASA 
faults could be used to separate fault-prone from non-fault prone 
modules with 87.5% accuracy.  In both of these studies, only the 
quantity of ASA alerts was used.  In our study, we use 
information about the types of the alerts and about historical 
relationships of sets of alerts that historically appear together in 
code with field failures. 

3. GENERATING ALERT SIGNATURES 
Our methodology is dependant upon historical, empirical 
information gathered throughout the development process 
between two builds of a software project.  Historical records of 
field failures, change records, and static analysis results are all 
required to generate accurate ASA alert signatures.  Once we have 
found appropriate data sources and are reasonably confident that 
the data is accurate in associating code changes with specific 
failures, we can find associations between files based upon what 
files changed together due to repairing field failures.  We begin by 
gathering source code change records and fault information to 

populate a matrix M that indicates how many times files have 
changed together in response to a field failure.   

The rows and columns of the matrix are comprised of every file in 
the system.  The values within the matrix indicate the number of 
times that the files assigned to that row and column combination 
have changed together to repair a specific fault. The values on the 
diagonal of the matrix represent the total number of times that a 
file has changed because of a field failure. 

After the change records and field failure information has been 
gathered and put into the matrix M, we perform the SVD on the 
matrix to determine what files tend to be associated with the field 
failures.  When we perform the SVD on the matrix M, matrices U, 
S, and V are generated. The columns of the U and V matrices 
provide information as to the structure of the association clusters, 
while the singular values from the S matrix represent the amount 
of variability each association cluster contributes to the original 
analysis matrix.  An association cluster is formed by taking the 
files in each column of the matrix U that has the same sign.  Thus, 
each column in effect can produce two separate association 
clusters. We are interested in these association clusters because 
our overall goal is to find out what sets of ASA alerts are 
associated with field failures.  To detect the association between 
ASA alerts and field failures, we need to analyze the files that are 
common between the field failures and the ASA alerts. 

Using the singular values from the S matrix, we can determine 
how many of the association clusters we will use in our analysis. 
We do not use all of the generated clusters due to cluster 
duplication and because clusters that have relatively small 
singular values are not linked together strongly and thus have less 
value.  A cluster’s strength, represented by the size of the singular 
value coupled with it, indicates the amount of variability that the 
association cluster provides to the original analysis matrix [7]. 
Osinski used a threshold of 90% to determine the appropriate 
number of clusters to examine [6]. 

Once we know what files are strongly associated with field 
failures, we can then determine how the ASA alerts compare with 
these file clusters.  In this step, we will create a new matrix M.  
However, this matrix will be an asymmetric matrix with the 
previously generated clusters on one axis and the different types 
of static analysis alerts on the other.  The values in the matrix M 
will be the difference in then number of ASA alerts found 
between two baseline ASA runs.  We are interested in the 
difference between two baselines because this will highlight any 
possible correlation between the removal of ASA alerts with 
fewer field failures and visa-versa.  Performing a SVD on the new 
matrix M yields another set of U, S, and V matrices.  We can 
interpret these matrices in much the same way as before, where 
the columns of U indicate clusters of ASA alerts.   

After the ASA alert signatures have been generated and identified, 
each subset of ASA alert types found in a given signature can be 
compared to a full set of ASA alerts from a code base.  However, 
since these ASA alert signatures were generated based on clusters 
of files, the signatures need to be applied in a similar fashion.  
Clusters of files in the system are generated in the same way as 
previously described, except that we examine all changes in the 
system that were made to modify all faults, as opposed to just 
those changes made to repair field failures so that we can examine 
all areas of the system for potential faults.  Once these clusters 



have been generated, the alerts contained in each cluster can be 
gathered based upon the files within each cluster.  ASA alert 
signatures can then be compared the alerts associated with each 
file cluster to determine which areas of the system may require 
further V&V efforts. 

4. IBM CASE STUDY 
During the spring of 2007, we performed a case study of our 
technique with a large software system.  In this section, we will 
describe our case study experience and our results. 

4.1 Case Study Setup 
We selected Matlab 7.2 R2006a as our SVD tool and used an 
internal ASA tool for generating ASA alerts.  We performed our 
case study on three modules of a large industrial project.  We 
selected these particular modules (totaling 5,244 files) because 
they were primarily written in C and C++, which are two of the 
languages that this particular version of the ASA tool could 
analyze.  We generated ASA signatures from clusters of files 
which changed together due to field failures between two releases 
from late October 2005 and mid-December 2006.  ASA was run 
on each release of the software, and we gathered information on 
the files, alert types, and line numbers where the alerts appeared.  
All 74 alert types from the five categories of alerts were included.  
ASA alerts were associated with clusters of files and the 
difference between the two releases was calculated for generating 
the ASA alert signature clusters. 

4.2 ASA Alert Signatures 
Using our technique, three ASA alert signatures were created in 
this case study.  The three signatures were: 

ASA Alert Signature 1: A Misstep in the Path 
• M5: Expression always evaluates true or false 
• W5: Operator “=” in the Boolean expression should 

possibly be “==” 
• W13: Function never used 
• P2: The cast (int)long will cause truncation on the 

portability target machine 
• S2: Passing untrusted input to argument 

ASA Alert Signature 2: Common Errors 
• W15: then/else/loop not surrounded by braces 
• W16: Function accesses the same variable through two 

parameters 
• M18: Comparing pointers to strings 
• E18: Function lacks a return statement with a value 

ASA Alert Signature 3: Memory Leaks 
• E23h: Heap memory leak 
• W9: Return of function not used 
• M21: Advisory has been issued for this function 

4.3 Applying the ASA Alert Signatures 
We examined the ASA alerts that were generated on the 
December 2006 release of the software system using the alert 
signatures that were previously created to identify sections of the 
system that may contain field failures.  In this release, the tool 
generated ASA alerts on 2,448 files.  We then collected field 

failure information from December 2006 to March 2007 to 
determine failure-prone files.  The focus of our technique is to 
highlight areas of the code base that are the most likely areas to 
produce field failures based upon historical evidence regarding 
ASA alerts and then compare those areas to actual reported field 
failures.  A summary of the effects of applying the ASA alert 
signatures can be found in Table 1. 

Table 1.  Summary of Effects of Applying Alert Signatures. 

 Before Applying 
ASA Signatures 

After Applying 
ASA Signatures 

Total Files to 
Examine 

2,448 393 

File Reduction 53% 93% 

Reduction in # of 
ASA alerts to be 
examined 

N/A 70% 

Percentage of field 
failures that could 
be found if all files 
were analyzed 

79.6% 49.5% 

Absolute False 
Positive Rate 
Improvement 

N/A 20% 

 

Using the ASA alert signatures, there was a significant reduction 
in the number of files and ASA alerts that need to be analyzed.  
As mentioned, the ASA tool reported at least one alert each of the 
2,448 files that it was run against.  After applying the ASA alert 
signatures, 393 of the 2448 files were identified as having alert 
types similar to a previous field failure.  There is, however, a 
reduction in the number of field failures found verses checking 
every file that contained at least one static analysis alert.  Note 
that our technique highlights areas of the code base that may 
contain field failures based upon previous development efforts 
and field failure reports.  The field failures that could not be 
identified by the ASA alert signatures do not match any previous 
alert patterns in reported field failures. Note that nearly 50% of 
the field failures still fall under a similar ASA alert pattern from 
previous releases, indicating that a large percentage of field 
failures come from a relatively common and consistent set of 
mistakes.   If every file that contained a static analysis alert was 
examined, only 79.6% of the field failures would be detected.  
Research has shown that ASA tools can only find certain types of 
programmer errors [8] and, thus, cannot be expected to find all 
faults that lead to field failures. 

4.4 Comparison to Other Techniques 
We also examined the efficacy of our technique against the 
models proposed by Zheng et al. [8] and Nagappan and Ball [3] 
Both Zheng et al. and Nagappan and Ball proposed that ASA alert 
density could be a predictor of pre-release fault density.  The main 
difference between the research presented in this paper and these 
two studies is the granularity level throughout the work.  Zheng et 
al. and Nagappan and Ball use the overall number of alerts or the 
alert density to predict whether a module is fault-prone or not, 



while we focus on fault-prone files.  Therefore, we also 
investigated whether there was a correlation between the number 
ASA alerts and field failures at the file level to better compare our 
technique to theirs.  The results of the correlation analysis at the 
file level can be found in Table 3. 

Table 3.  Summary of Spearman Rank Correlation for Files 

  # ASA 
alerts 

# test 
faults 

# field 
failures 

# total 
failures 

Correlation 
Coefficient 

1 .182 .139 .212 # ASA 
alerts 

Sig.  . .001 .001 .001 

Correlation 
Coefficient 

 1 .143 .924 # test 
failures 

Sig.   . .001 .001 

Correlation 
Coefficient 

  1 .510 # field 
failures 

Sig.    . .001 

As shown in Table 3, we did not find a strong correlation between 
the number of ASA alerts and the number of field failures.  We 
also used a discriminant analysis to predict the fault-prone files in 
a similar fashion to Zheng.  We found that our technique had a 
15.4% improvement in true positive rate over their discriminant 
analysis at the file level for this data set.  From this we conclude 
that while we found similar results as Zheng and Nagappan at the 
module level, our technique showed some improvement at the file 
level. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a technique for combining a 
project’s historical field failure information, change records, and 
static analysis alerts to generate ASA alert signatures.  These alert 
signatures consist of groupings of ASA alert types that have been 
directly linked to field failures in previous releases.  By applying 
these signatures to a current set of ASA alerts, developers can 
isolate specific files and alert types that historically have led to 
field failures.  Our technique differentiates itself from other 
techniques by being applied at the file level as opposed to module 
level, and by highlighting specific groupings of alerts with alert 
density as opposed to just alert density.   

We performed a case study with an industrial software system at 
IBM to evaluate our technique.  Field failure information, change 
records, and ASA alerts were gathered on two releases of the 
system over a 14-month period.  The data from these releases 
were used to build ASA alert signatures that correspond to field 
failures found between those two releases.  We then applied these 
ASA alert signatures to the alert set from the latest release to 

predict the failure-prone files for the following three months. We 
found that 50% of the field failures could be discovered by 
examining the 10% of the files and static analysis alerts indicated 
by the alert groupings.  The remaining failures were either not 
detected by a signature (30%) which could be an indication of a 
new type of error in the field, or they were on areas of the code 
where no static analysis alerts were detected. 

The analyses presenting in this paper using SVD, both in the 
background section and in the current work, show examples of 
how relationships between files can be detected using software 
development artifacts, such as faults, field failures, and ASA 
alerts.  We are currently continuing to examine the various 
different types of development artifacts that could be used to help 
drive development decisions.  
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