Expediting Programmer AWAREness of Anomalous Code

Sarah E. Smith, Laurie Williams, Jun Xu
North Carolina State University
{sarah_smith, lawilli3, jxu}@ncsu.edu

Abstract

Long fix latency, the amount of time between fault
injection and fault removal, could substantially increase
the cost of a fault fix. To mitigate this cost, software
engineers could be made aware of potentially-anomalous
code almost as soon as it is written. Test-driven
development is a style of programming in which code and
tests are written in tight cycles, therefore providing
feedback to software engineers early and often. Enhancing
test-driven development feedback loops to automatically
and continuously provide ranked, prioritized, and filtered
alerts to the software engineer on the correctness and
security of their code implementation should reduce the
cost of fixing software faults. The Automated Warning
Application for Reliability Engineering (AWARE) tool is
being developed to support enhanced test-driven
development.

1. Introduction

A software fault' may be detected only after it is
revealed in testing or in code analysis, often after a large
amount of code has been written. Long fix latency, the time
between fault injection and fault removal, could
substantially increase the cost of the fault fix. By
expediting programmer awareness of faults, erroneous code
could be more easily corrected because the programmer
will be more cognizant of recent changes that could have
caused the fault.

Test-driven development (TDD) [1] is a style of
programming in which code and tests are written in tight
cycles. By design, these tight cycles help to reduce the
time between fault injection and removal since feedback is
provided to the software engineer early and often. In the
unit test cycle of TDD, the programmer works in rapid
cycles of writing code, unit tests, and running the tests.

Enhancing TDD to include both static and dynamic
analysis will increase the scope of faults detected. Static
analysis reveals more Assignment and Checking defects
while testing reveals more Function and Algorithm defects
[7] in the Orthogonal Defect Classification [3] scheme.
However, static analysis does have the disadvantage of a
high number of false positives [7].

! The term “fault” is used to describe anomalies that may never surface as
failures in operational use of the product.

The objective of the research is to enhance TDD
feedback loops to automatically and continuously provide
ranked, prioritized, and filtered alerts to the sofiware
engineer on the correctness and security of their code
implementation during development. The research builds
upon previous research in continuous testing [6, 5] and
automatic test case generation to reduce static analysis false
positives [2]. The Automated Warning Application for
Reliability Engineering (AWARE) tool is being built for
the Eclipse” platform to support enhanced TDD.

2. AWARE
AWARE automatically and continuously provides the

software engineer a fault listing based upon compilation,

unit testing, and static analysis. Several development
environments, such as Eclipse, maintain compilation of
source code. AWARE utilizes continuous compilation and
builds upon two other tools: Continuous Testing [6, 5] and

Check ‘n” Crash [2] (CnC). Continuous Testing

continuously and automatically runs automated unit tests

using spare processor cycles while the programmer
continues to work [6, 5]. CnC conducts static analysis using

ESC/Java2®; false positives are reduced via automatically

generated test cases [2]. In AWARE, the alerts produced

by each technique and the response of the programmer to
these alerts form a feedback loop to reduce the reported
false positives as the framework is being used.

The following terms define specific points of time in the
fault lifecycle of interest to the research:

e Fault injection: the point at which a fault is introduced
in the program source code.

o First alert: the point at which a programmer is notified
of a potential fault in the code.

e Action alert: the point at which the programmer clicks
on an alert to obtain more information.

e Close point: the point at which the alert goes away
because the fault has been fixed or because it was
intentionally rejected by the programmer.

Each of these points in time is detectable by the
presence or absence of a failing test case or static analysis
alert. Therefore, the fault injection and close point times
may be inaccurate by at most one alert run cycle. Based on

? http://eclipse.org
3 http://secure.ucd.ie/products/opensource/ESCJava2/

the above definitions, the following metrics are defined for

experimental evaluation. The relationship between these

metrics is demonstrated pictorially in Figure 1.

e Fault fix latency: the time between the fault injection
and fault close point.

e Ignorance time: the time between fault injection and
action alert when the programmer becomes consciously
aware of details of the reported fault.

e Fix time: the amount of time a programmer spends to
fix the reported fault.

e Action latency: the time between the first fault alert and
the first programmer action to address the alert.

Ignorance Time Fix Time
y - -
l I Eﬂc:tion Latency, I
[0 1
Fault First Action Close
Injection Alert Alert Point

Fault Fix Latency
Figure 1: Evaluation Metric Relationships

Research [6, 5] indicates that fix time is correlated with
ignorance time; by reducing ignorance time, fix time will
be reduced. Ignorance time should be reduced by
providing programmers with prioritized alerts from test
failures and static analysis results. Therefore the reliability
and security of code will be improved through more
attention to code correctness.

3. Alert Ranking and Prioritization
The programmer interacts with AWARE by reacting to

the alerts, potentially repairing the faults indicated, and
giving feedback on the accuracy and relevance of the alert
information. AWARE adapts its internal ranking and
filtering of alerts based on this feedback and on the results
of automatically-generated test cases, to improve its future
performance.

AWARE will utilize a single, unified metric to rank the
alerts from different sources. The ultimate criterion for
ranking is the expected accuracy of an alert. The factors
listed below will be initially used for alert ranking.

e Type accuracy (TA): The probability that a particular
type of alert is a true positive. This will be done by
categorizing different fault types and the observed
accuracy of a type.

e Redundancy factor (RF): The probability that an alert
is a true positive given that multiple tools have reported
the same alert. This can be facilitated by standardizing
the classifications and outputs of multiple tools.

e Code locality (CL): The probability that an alert in a
given code location is a true positive. Kremenek et al.
[4] show that alerts reported by static analysis tools
frequently cluster by code locality. It is more likely a
new alert is a true positive if other nearby alerts are true
positives.

e Test coverage (TC): The probability that an alert is a
true positive despite the amount of testing. We expect
an inverse relationship between the probability of true
positives versus the amount of test coverage.

Using the list of factors, we can compute the ranking of

a set of reported alerts by finding the conditional

probability that a particular alert « is a true positive (TP)

given the factors listed above. Formally, the probability is
expressed in the following formula given the alert &z Pr(a
is TP | TA(), RF(e), CL(e), TC(cy)). The value of the
formula can be computed using elementary probability
theory. As a programmer inspects the alerts, he or she will
determine whether an alert is a true or false positive. Once

a response is known, we can use the feedback to recompute

the prior probability values for TA, RF, CL, and TC.

4. Conclusions and Future Work

By extending TDD to include static analysis cycles,
more code vulnerabilities should be discovered earlier
during development, thereby reducing the ignorance time.
The reduction of ignorance time should lead to the
reduction of fix time. Future work will investigate the
relationship between the metrics discussed in the paper to
determine if the enhancement of TDD reduces the fault fix
time.

Acknowledgements
This work is supported by the NCSU Center for
Advanced Computing and Communication.

References

[1] K. Beck, Test Driven Development -- by Example. Boston:
Addison Wesley, 2003.

[2] C. Casllner and Y. Smaragdakis, "Check 'n' Crash:
Combining Static Checking and Testing," in International
Conference in Software Engineering. St. Louis, MO, USA,
2005

[3] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D.
S. Moebus, B. K. Ray, and M.-Y. Wong, "Orthogonal Defect
Classification - A Concept for In-Process Measurements,"
IEEE Transactions on Software Engineering, vol. 18, pp.
943-956, 1992.

[4] T.Kremenek, K. Ashcraft, J. Yang, and D. Engler,
"Correlation Exploitation in Error Ranking," presented at
International Symposium on Foundations of Software
Engineering (FSE), Newport Beach, CA, 2004.

[5] D. Saffand M. D. Ernst, "Reducing Wasted Development
Time Via Continuous Testing," presented at International
Symposium on Software Reliability Engineering, Denver,
CO, 2003.

[6] D. Saffand M. D. Ernst, "An Experimental Evaluation of
Continuous Testing During Development," presented at
International Symposium on Software Testing and Analysis,
Boston, MA, USA, 2004.

[7] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl,
and M. Vouk, "A Study of Static Analysis for Fault Detection
in Software," North Carolina State University, Raleigh, NC
TR-2005-26, 2005.

